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(71) Applicant: André Skupin, Lakeside, CA (US)
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KNOWLEDGE SPACE ANALYTICS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 63/186,258, filed May 10, 2021, and
entitled “Systems and Methods for Knowledge Space Ana-
lytics,” which is incorporated by reference herein in its
entirety.

BACKGROUND

Contemporary society places increasing demands on
people becoming knowledge workers who are able to fulfill
diverse roles by ingesting and producing large numbers of
knowledge artifacts in the course of everyday activities.
Knowledge workers with varied disciplinary backgrounds—
accustomed to speaking in the divergent languages of dis-
tinct domains—are challenged to find common ground as
the basis for effective communication, collaboration, and
shared understanding.

Geographic principles and technologies, from cartogra-
phy to GIS and GPS, have long provided for an integrative
role for varied disciplinary backgrounds. Thus, “geographic
space” has become foundational for exploration, learning
and informed decision-making in fields as diverse as urban
planning, environmental protection, or national defense.
This technology is grounded in the use of locational refer-
ence systems in which the location of any geographic
phenomenon can be expressed. Standardized map projec-
tions are used to project these locations into a map space.
Base maps, as carefully constructed inventories of geo-
graphic space, form unifying backdrops for thematic over-
lays and the monitoring of dynamic events.

In contrast, similarly integrative, operational, and visually
engaging solutions are non-existent when it comes to
“knowledge spaces.” The visual, analytical and communi-
cative capabilities that are taken for granted with geographic
mapping are missing when one desires to represent actors,
artifacts, and activities in a knowledge space. Thus, there are
no platform technologies that allow integration of such
capabilities into broader information technology solutions.

SUMMARY

In some embodiments, a system or method involves the
following. Content of first text documents are received.
Multiple topic models are trained based on the content of the
first text documents. The multiple topic models are filtered
and harmonized. Topic labeling is performed for the mul-
tiple topic models. Topic model inferencers are produced for
the multiple topic models.

In some embodiments, reference system scores are cre-
ated for second text documents based on the topic model
inferencers. A base map model is trained using the reference
system scores. The trained base map model is stored. A base
map is visualized by using the trained base map model and
the topic labels.

In some embodiments, a map server is used to serve the
base map as a tile map service, web map service, or web
feature service.

In some embodiments, the topic model inferencers are
loaded. A base map model is loaded. The content of third
text documents is accessed. A reference system API is
provided. A base map API is provided.

In some embodiments, a database server stores the topic
model inferencers, the third text documents, reference sys-
tem scores, the base map model, and map scores.

In some embodiments, the reference system scores are
computed by accessing the topic model inferencers and
performing inferencing on the third text documents. The
map scores are computed by accessing the base map model
and the reference system scores.

In some embodiments, the base map API comprises using
an application server to produce a query response to a text
input. An overlay reference system score is produced by
accessing the topic model inferencers and performing topic
inference on a text string extracted from the text input. An
overlay map score is produced by computing a similarity
measure between the overlay reference system score and
reference system scores associated with base map elements
of the base map model. A response geometry is constructed
using the overlay map score and a geometry of the base map
elements.

In some embodiments, the response geometry is con-
structed by analyzing the overlay map score and utilizing the
geometry of one or more of the base map elements to create
point objects, line objects, area objects, or landscape objects.

In some embodiments, the reference system API uses an
application server to respond to either a text-based query, a
document-based query, or a map-based query, with a query
response being produced using processes as follows. A
query reference system score is determined. A similarity
value is computed between the query reference system score
and reference system scores stored by a database server.
Document identifiers are retrieved for selected text docu-
ments from the third text documents whose similarity value
compared to the query reference system score falls within
user-definable upper and lower bounds. Document metadata
is obtained by using the document identifiers to find the
selected text documents stored by the database server. Docu-
ment geometry is obtained by using document identifiers to
find map scores for the selected text documents stored by the
database server. The query response is constructed contain-
ing geometry information and metadata for the selected text
documents.

In some embodiments, determining the query reference
system score in response to the text-based query is as
follows. A text string is extracted from the text-based query.
The topic model inferencers are accessed. Topic inferencing
is performed on the text string using the topic model
inferencers.

In some embodiments, determining the query reference
system score in response to the document-based query is as
follows. A document identifier is extracted from the docu-
ment-based query. The document identifier is used to find a
document reference system score among the reference sys-
tem scores stored by the database server. The found docu-
ment reference system score is used as the query reference
system score.

In some embodiments, determining the query reference
system score in response to the map-based query is as
follows. Query geometry is extracted from the map-based
query. Spatial overlay is performed between the query
geometry and a target geometry to find matching query
targets. The matching query targets are used to find matching
documents from among the documents stored by the data-
base server.

In some embodiments, a set of query targets is identical to
a set of the third text documents being queried and the
spatial overlay between the query geometry and the target
geometry directly identifies the matching documents.
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In some embodiments, a set of query targets is not
identical to a set of the third text documents being queried
and a process for finding matching documents is as follows.
The reference system scores of matched query targets are
retrieved. The retrieved reference system scores are aggre-
gated into the query reference system score.

In some embodiments, a set of query targets is not
identical to a set of the third text documents being queried
and a process for finding matching documents is as follows.
One or more query objects is extracted from the map-based
query. The spatial overlay is performed between each query
object and the target geometry to find the matching query
targets. For each matching query target, its target reference
system score is retrieved. For each target reference system
score, the similarity value to each of the reference system
scores is computed, and documents are filtered within user-
definable bounds of similarity. One local document set for
each query object is formed by combining sets of documents
associated with individual query targets through local logic
operators and local numeric operators. A global document
set is formed by combining the sets of documents associated
with each local document set through global logic operators
and global numeric operators. The global document set is
transformed into the query response by retrieving geometry
information and metadata for the selected text documents.

In some embodiments, the map-based query contains
positive query objects and negative query objects that are
combined using a process as follows. One or more of the
positive query objects are extracted from the map-based
query. One or more of the negative query objects are
extracted from the map-based query. A positive global
document set is created by using the positive query objects.
A negative global document set is created by using the
negative query objects. The global document set is formed
by combining the positive global document set and the
negative global document set through negative logic opera-
tors and negative numeric operators. The global document
set is transformed into the query response by retrieving
geometry information and metadata for documents.

In some embodiments, computing for each target refer-
ence system score the similarity to each of the reference
system scores includes a look-up of target-to-document
similarity, which includes accessing inverted map scores.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a knowledge space integrating
actors, artifacts, and activities of a knowledge ecosystem, in
accordance with some embodiments.

FIG. 2 is a flow chart showing an example process for the
creation of a reference system and a base map and the
provision of analytical functionality, in accordance with
some embodiments of the present disclosure.

FIG. 3 is a flow chart showing an example process for
implementing inference server functionality in accordance
with an Inference Server component shown in FIG. 2, in
accordance with some embodiments.

FIG. 4 is an image of an example multi-scale, zoomable
visualization of a base map, in accordance with some
embodiments of the disclosure.

FIG. 5 is a flow chart showing an example process for
implementing a pre-inference merging of topic models in
accordance with a reference system creation component of
FIG. 2, in accordance with some embodiments.

FIG. 6 is a flow chart showing an example process for
implementing a post-inference concatenation of topic model

inferences in accordance with the reference system creation
component of FIG. 2, in accordance with some embodi-
ments.

FIG. 7 is a flow chart showing an example process for
constructing a visualized base map in accordance with a
visualize base map component of FIG. 2, in accordance with
some embodiments.

FIG. 8 is an image of an example base map with an
overlay of cluster symbols, cluster labels, and terrain, in
accordance with some embodiments of the disclosure.

FIG. 9 is an image of an example user interface with a
base map being served in accordance with a map server
component of FIG. 2, in accordance with some embodi-
ments.

FIG. 10 is a flow chart showing an example process for
transforming a text query into a query response that can be
displayed as a map overlay, in accordance with some
embodiments.

FIG. 11 is an image of an example base map with a text
query being visualized as a point feature in accordance with
a Base Map API component of FIG. 2, in conjunction with
the base map being displayed in accordance with the map
server component of FIG. 2, in accordance with some
embodiments.

FIG. 12 is images of portions of an example base map
with a text query visualized as a multi-part area feature in
accordance with the Base Map API component of FIG. 2, in
conjunction with the base map being displayed in accor-
dance with the map server component of FIG. 2, in accor-
dance with some embodiments.

FIG. 13 is an image of an example base map with a topical
gap being discovered with a text query visualized as an area
feature in accordance with the Base Map API component of
FIG. 2, in conjunction with the base map being displayed in
accordance with the map server component of FIG. 2, in
accordance with some embodiments.

FIG. 14 is images of example base maps with multiple
text queries being visualized simultaneously in accordance
with the Base Map API component of FIG. 2, in conjunction
with the base map being displayed in accordance with the
map server component of FIG. 2, in accordance with some
embodiments.

FIG. 15 is a flow chart showing an example process for
processing a reference system score representing a query
into a query response in accordance with an Application
Server component of FIG. 3, in accordance with some
embodiments.

FIG. 16 illustrates an example for a text-based query
being processed using a URL as input and the resulting
query response being produced and displayed in accordance
with FIG. 15, in accordance with some embodiments. The
query response is displayed as map overlay of documents
and as a sortable list of documents and one selected docu-
ment is highlighted as point overlay.

FIG. 17 illustrates an example for a text-based query
being processed using a URL as input and the resulting
query response being produced and then displayed in accor-
dance with FIG. 15, in accordance with some embodiments.
The query response is displayed as clustered map overlay
and as a sortable list of documents and one selected docu-
ment is highlighted as area overlay.

FIG. 18 is a flow chart showing an example process for
processing a text-based query into a query reference system
score in accordance with a text-based query of FIG. 3, in
accordance with some embodiments.

FIG. 19 is a flow chart showing an example process for
processing a document-based query into a reference system
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score in accordance with a document-based query of FIG. 3,
in accordance with some embodiments.

FIG. 20 illustrates an example of a user interface widget
for choosing query geometry type for map queries and
performing editing and deletion of query geometry in accor-
dance with a map location trigger of FIG. 3, in accordance
with some embodiments.

FIG. 21 illustrates examples for how query targets can be
identified for further processing by performing spatial
matching between query geometry and query targets in
accordance with a map-based query of FIG. 3, in accordance
with some embodiments.

FIG. 22 is a flow chart showing an example process for
processing a map query into a query reference system score
by aggregating the reference system scores of base map
elements identified through a spatial overlay operation in
accordance with the Map-based Query component of FIG. 3,
in accordance with some embodiments.

FIG. 23 is a flow chart showing an example process for
processing a map query in accordance with the Map-based
Query component of FIG. 3, by extracting multiple query
objects from the query, creating a local document set for
each query object, and combining local document sets into
a global document set, in accordance with some embodi-
ments.

FIG. 24 illustrates an example for how the input of
multiple query geometry objects in a user interface results in
a query response being processed in accordance with FIG.
23, in accordance with some embodiments.

FIG. 25 is a flow chart showing an example process for
processing a map query into a set of return documents by
distinguishing between positive and negative query compo-
nents and processing each in accordance with a Create
Document Set component of FIG. 23, followed by the
application of negative operators to produce a set of return
documents, in accordance with some embodiments.

FIG. 26 illustrates an example of the effect of processing
a map query containing positive and negative components
and varying the negative numeric operator in accordance
with FIG. 25, in accordance with some embodiments.

FIG. 27 is a flowchart showing an example process for
processing a map query that modifies the Create Document
Set component of FIG. 23 to perform a look-up of inverted
map scores, in accordance with some embodiments.

FIG. 28 is a simplified schematic diagram of a knowledge
space computerized system for use in the example knowl-
edge space shown in FIG. 1, in accordance with some
embodiments.

FIG. 29 shows tables illustrating how base map models
created from multiple topic models may support multiple
means for generating and displaying clusters of map ele-
ments and their labels.

DETAILED DESCRIPTION

Systems and methods designed to support visual and
computational analytics operations on domain knowledge
spaces and document repositories are described herein. They
encompass novel methods for preparing topic models for
inference to accommodate a variety of domain definitions
and scenarios and provide novel analytical operators for
visual query overlays and search in knowledge spaces.

An example knowledge ecosystem 100 is shown in FIG.
1 in which a knowledge space 101 integrates actors 102,
artifacts 103, and activities 104 together, in accordance with
some embodiments. Examples of the actors 102 may include
researchers, educators, students, job applicants, an organi-

zation, among other people or entities in need of the systems
and methods described herein. Examples of the artifacts 103
may include text books, research articles, algorithms, soft-
ware documentation, a job advertisement, among other
items (typically text based) that can be searched and orga-
nized by the systems and methods described herein.
Examples of the activities 104 may include performing
analyses, writing code, finding collaborators, filling a vacant
job position, finding an open job position, among other
actions that can produce results using the systems and
methods described herein. The sort of questions answered or
results achievable by the systems and methods described
herein may be, for example, to determine what to teach,
what to learn, who to partner with, who to put on a project
team, what to read, what is emerging in a field, which tool
is appropriate for a given task, what is fading from a
particular field, among other possibilities. The knowledge
space 101 provides integrative, operational and evolving
capabilities for achieving such results.

In one general aspect, a method for construction of a
knowledge reference system is disclosed. The method
involves the combination of multiple topic models into to a
unified, yet flexible, inference mechanism. Multiple topic
models are combined that may emanate from the application
of different algorithms or different parameters associated
with algorithms, and may use different source documents or
documents from different knowledge domains as inputs.

In another general aspect, methods are disclosed for
performing inferencing that is driven by multiple topic
models and for generating a base map. Topic model infer-
encing is generally performed on text documents, which
generates for each document a high-dimensional reference
system score that includes a numeric value being produced
for each topic from among the multiple topic models. The
reference system scores of documents are input to dimen-
sionality reduction computation to produce a base map
model. The base map model includes base map elements that
each have a low-dimensional location in the map space and
a reference system score. The base map model is trans-
formed into a multi-scale base map by applying computa-
tional transformation of geometry and topology and apply-
ing symbolization. The base map is deployed on a map
server and made accessible through several map services.

In another general aspect, methods are disclosed for
computing and displaying map overlays in knowledge
space, providing for any text string to become projected into
and visualized in the map space. This involves topic model
inference being applied to a text query, resulting in a
reference system score. Then, computation of numeric simi-
larity values between the overlay reference system score and
the reference system scores of the base map element results
in a map score, which includes a vector of similarity values.
A map score is transformed into a visual overlay after
applying filtering operations on the map score. Different
methods are disclosed that are designed to produce different
geometric representations of map scores, including as
points, lines, areas, or landscapes. An application program-
ming interface (API) is disclosed through which parameters
for the production of map overlays of text strings are
communicated to an application server. The application
server produces a query response that includes detailed
geometric information to allow display of query results in
the map space.

In another general aspect, methods and systems are dis-
closed that provide for integration of text documents into the
high-dimensional reference system and the map space, in
order to support document search and exploration. A data
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base component is disclosed for storing model components
and document representations in various forms. Stored
model components may include topic model inferencers and
base map models. Stored document representations may
include text documents, inferred reference system scores for
documents, map scores for documents, and inverted map
scores for base map elements.

In another general aspect, methods are disclosed for
computing and displaying the results of queries for docu-
ments. Depending on the input information associated with
a query, different methods are disclosed for document-based,
text-based, and map-based queries. A document-based query
is a query that has as inputs one or more documents, whose
stored reference system scores are used to search for other
documents or artifacts with similar reference system scores.
A text-based query is a query that has as an input a text
string, to which topic model inference is applied, resulting in
a query reference system score, which is used to search for
documents or artifacts with similar reference system scores.
A map-based query is a query that has as inputs one or more
locations in the map space, which take the form of point,
line, or area query geometry objects.

Map-based queries are executed by performing spatial
overlay between query geometry and the geometry of query
targets. In one embodiment of map-based queries, referred
to as direct document targeting, the query targets and the
documents being queried are identical, allowing the map
query to involve spatial overlay between query geometry
and the stored geometry of queried documents.

In a second embodiment of map-based queries, referred to
as indirect document targeting, the query targets are either
the base map elements stored in the base map model or other
stored documents that have associated geometry information
in the map space. In that embodiment, each of the query
targets identified through spatial overlay has a reference
system score associated with it. The similarity of the refer-
ence system scores of identified query targets to the refer-
ence system scores of query documents is the basis for
ranking of documents in the query response, with documents
ranked by similarity value. Methods are disclosed for how to
combine information gathered from multiple query targets
into the query response. In one embodiment, the reference
system scores of multiple identified query targets are aggre-
gated into a single reference system score for the query, and
queried documents are then ranked according to the simi-
larity of their reference system scores to that query reference
system score. In another embodiment, the documents whose
map scores indicate an association with identified query
targets are grouped into sets, with sets delineated by indi-
vidual query geometry objects. Each individual query geom-
etry object delineates a local set of query targets. For each
query target, a set of documents is determined based on the
similarity between reference system scores of query targets
and query documents, with application of a similarity
threshold. Logic operators are applied to create a local set of
documents from the sets of documents associated with
individual query targets. Numeric operators are used to
transform the similarity values of documents associated with
multiple query targets into a single similarity value. As each
local set of documents is associated with one query geom-
etry object, a global set of documents is then created by
applying a global logic operator to the local sets and a global
numeric operator is applied to transform the similarity
values of documents associated with multiple local sets into
a single global similarity value for each document.

Methods are disclosed for using query geometry objects
to drive negative selection, which specifies map regions

from which selection of documents is not desired. Negative
query objects are used either in conjunction with a negative
logic operator to exclude documents from the global set of
documents, or negative query objects can be used in con-
junction with a negative numeric operator that negatively
weighs documents appearing in the global set of documents.

Methods are disclosed that enable faster query execution
by the use of inverted map scores. Whereas a map score is
associated with a document and includes similarity values
between that document and each base map element, an
inverted map score is associated with a base map element
and includes similarity values between that base map ele-
ment and each document. Storage of inverted map scores
allows fast look-up of documents whose reference system
scores have high similarity to the reference system scores of
base map elements.
1.1 Overview of System Architecture and Functionality

A process 200 in the flowchart of FIG. 2 illustrates a
high-level function of components of the system disclosed
herein. The particular steps, order of steps, and combination
of steps is shown for explanatory purposes only. Other
embodiments may use other steps or combinations of steps
or in a different order to perform the same general functions.
Additionally, one or more applications, routines and physi-
cal devices can perform the process 200.

The part of the knowledge space analytics system that
performs the process 200 disclosed herein includes several
components, including (among other components described
below):

a document database component 201 (FIG. 2) that ingests,
stores, and serves document data to be used in the
system according to the process 200;

a reference system creation component 202 (FIG. 2);
a base map creation component 203 (FIG. 2);
an inference server component 204 (FIG. 2; details shown

in FIG. 3) that performs computations integrating base
map, reference system and user inputs, accessible
through application programming interfaces (Web
APIs), including a reference system API 205 (FIG. 2)
and a base map API 206 (FIG. 2); and

a map server component 207 (FIG. 2) that serves base
maps through industry-standard services 208, 209, 210
(FIG. 2).

The reference system creation component 202 generally
accesses (at 211) documents in the document database
component 201 for reference system training. The reference
system creation component 202 generates or trains (at 212)
one or more topic models from a large number of text
documents accessed from the document database compo-
nent 201. When multiple such topic models are trained and
used simultaneously, they are filtered and harmonized (at
213) into a combined topic model representation and indi-
vidual topic models are labeled (at 214). The output includes
one or several topic model inferencers. The topic model
inferencers are loaded (at 215), stored and made accessible
by the inference server component 204 in order to allow
computation of reference system scores for any text string.
A reference system score includes a vector of n numeric
weights, with n corresponding to the total number of topics.

The base map creation component 203 uses the one or
several topic model inferencers produced by the reference
system creation component 202 and accessed via the infer-
ence server component 204. Additionally, the base map
creation component 203 accesses (at 216) documents for
base map training from the document database component
201. It first performs topic inferencing to generate or infer
(at 217) a reference system score for each of the large

US 11,650,073 B2
7 8

5

10

15

20

25

30

35

40

45

50

55

60

65



number of text documents accessed (at 216) and with respect
to topic model inferencers accessed (at 222) from the
inference server component 204. The documents to perform
this inference on may be the same set of documents or a
different set of documents from those accessed (at 211) by
the reference system creation component 202 and used in
topic model training (at 212). This topic inference operation
(at 217) results in each input document becoming repre-
sented by an n-dimensional topic vector of numeric loadings
over n topics, with the length n of the vector equal to the
total number of topics.

Using the n-dimensional topic vectors as inputs, a base
map model is then trained (at 218). A base map model
includes base map elements, with each such element having
associated with it an n-dimensional topic vector and data
about the location of the base map element in a low-
dimensional map space. Different dimensionality reduction
algorithms may be used to populate a base map element’s
n-dimensional topic vector and low-dimensional map space
location. Among these dimensionality reduction algorithms
one can distinguish between entity-centered and model-
centered techniques, of which multidimensional scaling
(MDS) and self-organizing maps (SOM) are respective
examples. In some embodiments, the low-dimensional space
has two dimensions, e.g., for mapping on a flat two-dimen-
sional surface. In other embodiments, the low-dimensional
space has three dimensions for presenting three-dimensional
locations (e.g., where the base map elements have some
elevation value to form a 3-D surface to indicate patterns in
in quantifiable attributes of base map elements, such as
topical coherence, cluster coefficients, and strength of local
neighborhood similarity).

The base map is then visualized (at 219) as derived from
the trained base map model and the topic model labels
received (at 223) from the reference system creation com-
ponent 202. The resulting base map includes two main
products: the trained base map model and, derived from it,
the visualization of the base map. The trained base map
model is loaded (at 220) to the inference server component
204 and used to perform base map inference in the inference
server component 204. The visualization or visual appear-
ance of the base map is generated through a series of
geometric and semiotic transformations, leading to a multi-
scale, zoomable visualization that is loaded (at 221) to, and
hosted by, the map server component 207 in form of a tile
map service 208, web map service 209, web feature service
210, or similar mechanism.

The inference server component 204 accesses (at 224)
documents from the document database component 201,
loads the topic model inferencers (at 215), and loads the
trained base map model (at 220). As shown in a process 300
of FIG. 3, the core functionality of the inference server
component 204 is provided by a database server 301 and an
application server 302. The particular steps, order of steps,
and combination of steps is shown for explanatory purposes
only. Other embodiments may use other steps or combina-
tions of steps or in a different order to perform the same
general functions. Additionally, one or more applications,
routines and physical devices can perform the process 300.

In addition to providing access from the document data-
base component 201 to stored documents for inference, the
database server 301 provides for storing of and access to
topic model inferencers 304 (loaded at 215), reference
system scores 305 for each document, base map elements
306, and map scores 307 (i.e., the reference system scores
for the base map elements). The reference system scores 305
are computed (at 308) based on the topic model inferencers

304 with respect to the stored documents accessed (at 224)
for inference from the document database component 201,
with the resulting reference system scores 305 being stored
by the database server 301. The inference server component
204 also provides for batch computation (at 309) of the map
scores 307 based on the reference system scores 305 and the
base map elements 306, with the resulting map scores 307
being stored by the database server 301.

Details of the application server 302 are described below
with reference to FIGS. 15, 18, 19, 22, 23, 25, and 27. In
general, the application server 302 operates in conjunction
with a web server 303 (or other appropriate computerized
device with which a user can trigger queries to the applica-
tion server 302 and receive back a response) to receive and
handle queries (e.g., test-based queries 310, document-based
queries 311, and/or map-based queries 312) from the user
and respond back to the user with query responses 313
containing selected text documents.

The web server 303 hosts a plurality of client-facing web
applications. Each web application is accessible by a client
computer system over a computer network. A client appli-
cation may interact with a web application hosted by the web
server 303. A client application may be a web browser that
provides a client-side interface to a web application. Func-
tionality provided in this manner generally includes a user
interface through which the user can generate the queries
and view the responses. For example, the user can enter text
(at 314) to trigger a text-based query 310, enter or select a
document (at 315) to trigger a document-based query 311,
and/or select a map location (at 316) to trigger a map-based
query 312. Upon receiving the query response 313, the web
server 303 displays each part of the response, such as the
zoomable map (map display 317), a list of relevant docu-
ments (list display 318), and the content of one or more of
the documents (content display 319).
1.2 Reference System Creation

This section describes the system components and meth-
ods to accomplish the creation of knowledge reference
systems (e.g., at 202) from a large number of text docu-
ments. The reference system creation component 202 takes
inspiration from the foundational role played by locational
reference systems in simultaneously driving geographic
base maps and the analytical components of geographic
information systems (GIS). Whereas geographic coordinate
systems (e.g., latitude/longitude) are based on centuries of
observation and measurement of geographic space by geod-
esists and surveyors, the present systems and methods are
performing observation and measurement of knowledge
spaces by means of topic models that distill patterns of
domain language from large numbers of text documents.
These models, like the abstract latitude/longitude coordinate
system, then lead a separate existence from the sources used
to create them and can be used to make inferences about
other text documents or text objects.

Akin to global positioning systems (GPS) being able to
infer the location of an object in the geographic coordinate
system, topic models can infer the location of a text object
in the knowledge reference system, with that location taking
the form of an n-dimensional vector of inferred topic load-
ings. The length n of that vector corresponds to the number
of topics for which loadings are inferred. This n-dimensional
vector is referred to as a reference system score. Among the
distinguishing marks of the present disclosure are novel
forms of topic models can be multi-scale (i.e., involving
multiple component models of varying granularity) and
multi-domain (i.e., involving component models for differ-
ent knowledge domains).
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1.2.1 Current State of Topic Modeling
Currently, the application of topic modeling tends to be

based on creating a single topic model, typically with
significant efforts required in determining an appropriate
number of topics, eliminating junk topics, and labeling
topics. Once optimized and, through topic labeling, made
interpretable, that single model is then used for inference,
i.e., to determine for an input text the relative loading of each
topic. In topic modeling, a loading refers to an inferred
quantitative measure of the degree to which input text relates
to a particular topic. For a topic model that includes n topics,
inference performed on an input text results in n loadings.
Some of these loadings will have higher quantitative values
than others, indicating a stronger association of correspond-
ing topics with the input text.

In deployment, topic models tend to be used for black box
inference, are rarely visualized and, more broadly, are rarely
central to the visualization of knowledge spaces. When topic
models are visualized it is most commonly in the process of
model creation and optimization, where visualization can
help to understand, modify, and filter model results, such as
in looking for the right number of topics to use or in
eliminating junk topics (e.g., as in Murdock, et al. (2015)
and Sievert, et al. (2014)). (Murdock, et al. (2015) (Mur-
dock, J., & Allen, C. (2015), Visualization Techniques for
Topic Model Checking, Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, (pp. 4284-
4285)) is incorporated herein by reference.) (Sievert, et al.
(2014) (Sievert, C., & Shirley, K. E. (2014), LDAvis: A
method for visualizing and interpreting topics, Proceedings
of the Workshop on Interactive Language Learning, Visual-
ization, and Interfaces (pp. 63-70), Baltimore, Md., USA:
Association for Computational Linguistics) is incorporated
herein by reference.)

However, it is rare that the visualization of topic model
results as such is an operational goal and central to how end
users will ultimately utilize and interact with the model. A
notable exception is the proposed use of topic models in a
process and system for highly interactive, map-like visual-
ization of a knowledge space represented by a topic model
(e.g., as in U.S. patent application Ser. No. 15/502,764).

The systems, methods, and processes described next
represent several significant advances, with a focus on
moving beyond the use of single topic models towards
multiple models being combined in order to enable inference
and analytics capabilities that have not been previously
articulated.

A further advance lies in the disclosed ability to utilize in
the creation of a base map any dimensionality reduction
method and process that takes high-dimensional vectors as
input. Examples for such methods and processes include
self-organizing maps (SOM), principal components analysis
(PCA), multidimensional scaling (MDS), Isomap, and t-dis-
tributed stochastic neighbor embedding (t-SNE).
1.2.2 Multi-Model Topic Representations

This section discloses novel means for moving beyond the
creation and use of a single topic model, towards the
combination of multiple topic models. Compared to pro-
posed solutions for aggregation of multiple topic models,
such as Zhiyong et al (2010) or Blair et al (2020), motiva-
tions for the present invention are quite different and con-
sequently so are the specific methods. Current approaches
are commonly driven by their stated goal of creating a
single, optimized model. Instead, the disclosed solution is
driven by the goal of simultaneously supporting zoomable
visualizations (i.e., multi-scale) that may be driven by
knowledge artifacts gathered across multiple domains (i.e.,

multi-domain). This translates into very different methods,
as compared to a narrow range of topic model granularity
(i.e., number of topics) in the aggregated models (e.g., as in
Blair et al (2020)) or composing of ensembles of topic
models trained with subsets of the same source data (e.g., as
in Zhiyong et al (2010)). (Zhiyong et al (2010) (Zhiyong, S.,
Ping, L., Yang, S., & Shen, X. (2010), Topic Modeling
Ensembles, IEEE International Conference on Data Mining,
(pp. 1031-1036)) is incorporated herein by reference.) (Blair
et al (2020) (Blair, S. J., Bi, Y., & Mulvenna, M. D. (2020),
Aggregated topic models for increasing social media topic
coherence, Artificial Intelligence, 50, 138-156) is incorpo-
rated herein by reference.)
1.2.2.1 Multi-Model Sources

A goal here is to combine results of multiple topic models
into a single inference mechanism, driven by the ultimate
goal of supporting zoomable visualization and novel forms
of visual analytics on knowledge spaces. There are different
options for accomplishing that with different ends. Three
main types of topic model combination are distinguished:

1. Topic models that use different algorithms and/or
parameters in executing those algorithms;

2. Topic models that are built from different source
documents; and

3. Topic models that are built from different source
domains.

Next, these three options are explained.
1.2.2.1.1 Option 1: Different Algorithms and/or Parameters

The same source data or data representing the same
knowledge domain are modeled, with the main differentia-
tion being the use of different topic model algorithms and/or
the use of different model parameters. A particularly illus-
trative example is the combination of models with different
number of topics, i.e., topic models having different granu-
larity. For example, a topic model that includes 10 topics
could be combined with a topic model that includes 50
topics and another topic model that includes 200 topics. In
other words, the resulting combined model in this example
may include up to 260 topics. An advantage of such a
combined, multi-granularity model lies in effectively sup-
porting a multi-scale representation, from coarser to finer
scales. While this is in seeming contradiction to the state-
of-the-art in topic modeling—with its focus on a single,
perfectly tuned model—the departure of the present disclo-
sure from the prescribed methods is especially advantageous
for generating scalable visualizations, where the display at
low zoom level is driven by coarser topic models, while a
high zoom level exposes finer topic models. FIG. 4 shows an
example of three zoom levels in a base map of the knowl-
edge domain of chemistry, starting with an overview highly
zoomed-out level that reveals broad concepts of the knowl-
edge domain (e.g., “organic chemistry” bordering “bio-
chemistry” and “medicine”, as in top panel at 401), followed
by intermediate zoom level revealing intermediate level
domain concepts (e.g., “amino acids”, as in middle panel at
402) and a detailed highly zoomed-in level (bottom panel at
403) that focuses on intermediate concepts (e.g., the “fatty
acid biosynthesis” region) and reveals related detailed con-
cepts (e.g., “glucose phosphate” and “acetyl coa”). Each of
these zoom levels 401-403 is based on the overall base map
for the domain of chemistry, and it is possible to zoom into
and out of the overall base map to the zoom levels 401-403
shown, e.g., by receiving input commands from a user’s
manipulation of a scroll wheel of a computer mouse or a
selection of a “+” or “-” option or a pinch zoom control on
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a touchscreen device or other suitable mechanism as can be
done for a conventional zoomable computerized geographic
map.
1.2.2.1.2 Option 2: Different Source Documents

Another option is to combine topic models that were
created from multiple source documents, even substantially
different source documents, such as from different corpora.
With the domain of computing technology as an example, an
example of three topic models derived therefrom may be:

(1) topic model derived from published patent applica-
tions and granted patents,

(2) topic model derived from scientific publications and
trade journals, and

(3) topic model derived from company-internal strategy
papers, marketing materials and technical documenta-
tion.

These three models could be created by different personnel,
at different times, and for different purposes, such as the
patent model being created to enable semantic search for
R&D purposes and the company-internal model created for
strategic alignment and knowledge management purposes.
Upon combining these individual topic models, a unified
knowledge reference system emerges, via which any inter-
nal and external knowledge-based activities of the company
and its competitors can be integrated.
1.2.2.1.3 Option 3: Different Source Domains

The notion of knowledge domains is very useful for
making distinctions among the myriads of knowledge-based
activities that an organization or an individual are engaged
in. However, there are many circumstances in which a
particular activity draws on concepts and documents that
related to more than one domain. For example, a company
engaged in the development and distribution of software to
predict the phenotype of an unknown biological agent based
on genotype analysis simultaneously operates in and needs
awareness of the domains of biology, software engineering,
and data science, but also business management. For some
subsets of these, a coherent domain intersection may already
exist—like bioinformatics at the intersection of biology and
informatics—but at other times a more fitting approach will
be to mix topic models for different domains post factum.
Moreover, even for a domain like bioinformatics, a topic
model specifically generated from the bioinformatics litera-
ture will tend to represent the two parent domains with
insufficient level of detail as compared to a combination of
two models, one for biology, the other for informatics.
1.2.2.2 Methods for Combining Topic Models
1.2.2.2.1 Pre-Inference Join

It is possible to combine multiple topic models into a
single model, by merging the representation of topic-term/
phrase associations that is internal to each model. That has
the distinct advantage that, when deployed, only a single
inference operation is necessary (an inference being the
determination of the topic loadings for some text input),
which will be faster than running multiple inferences, one
for each model.

An example process 500 is shown in the flowchart of FIG.
5 for implementing a pre-inference merging of topic models,
in accordance with some embodiments. The particular steps,
order of steps, and combination of steps is shown for
explanatory purposes only. Other embodiments may use
other steps or combinations of steps or in a different order to
perform the same general functions. Additionally, one or
more applications, routines and physical devices can per-
form the process 500.

Any appropriate or desired number n of topic models can
be joined or merged by this process 500. However, for the

illustrated example, only three topic models 501, 502, 503
are shown. At 504, the topic models 501-503 are merged or
combined. After 504, an inferencer 505 is generated from
the combined multi-topic model. The inferencer may be a
binary file that allows inferring topic model loadings for a
given text input in accordance with the topic model from
which the inference is generated. At 506, the inferencer 505
is used to perform an inference operation on the text input
508 to produce combined topic model loadings 507. Text
input 508 may be provided at 224 from the document
database 201 or provided at 310 from a text query trigger
314 or provided at 311 from a document trigger at 315.

In practice, the combining of multiple models into a single
model at 504 is technically more challenging than keeping
them separate—including for inference—partly due to the
fact that the underlying vocabularies of two different models
will tend to NOT be completely distinct. Further, when
dealing with a very large number of individual topic models
as input (501-503 being only an example that happens to
involve three topic models), it may become a combinatorial
challenge to combine all of them into the range of possible
multi-models, as opposed to performing on-the-fly combi-
nation post-inference. Most importantly, while interpretabil-
ity of individual topics is always a key challenge in deploy-
ing topic models, this is presumably even more difficult
when the associations of terms/phrases and topics expressed
in individual models are merged, such that mixed topics
come about that are even harder to label/interpret. For all
those reasons, although pre-inference joining is possible, in
the system described here, the post-inference joining of
models is the preferred choice.
1.2.2.2.2 Post-Inference Join

An alternative to working with a single, combined model
is to maintain separate models, each performing separate
inferences, but combining the result of such inferences
afterwards. An example would be the concatenation of the
vectors of topic loadings produced by different topic model
inferencers. A key advantage is modularization of models
and inferencers. One advantage is that a user of the system
can then maintain topic models separately, such as perform-
ing updates and integration of streaming data sources, tasks
that would be more challenging in pre-inference joined
models. Another advantage lies in keeping inferencers sepa-
rate, which allows for more modular deployment and access.
For example, the computational load of inferencing can be
distributed, with inferencers running on different servers or
in different containers.

An example process 600 is shown in the flowchart of FIG.
6 for implementing a post-inference concatenation of topic
model inferences, in accordance with some embodiments.
The particular steps, order of steps, and combination of steps
is shown for explanatory purposes only. Other embodiments
may use other steps or combinations of steps or in a different
order to perform the same general functions. Additionally,
one or more applications, routines and physical devices can
perform the process 600.

As for the process 500, any appropriate or desired number
n of topic models can be joined or merged by this process
600. However, for the illustrated example, only the three
topic models 501, 502, 503 are shown again. The topic
models 501, 502 and 503 are used to generate inferencers
601, 602 and 603, respectively. At 604, 605 and 606, the
inferencers 601, 602 and 603 are used to perform inference
operations on the text input 508, producing individual vec-
tors of topic loadings 607, 608 and 609. Text input 508 may
be provided at 224 from the document database 201 or
provided at 310 from a text query trigger 314 or provided at
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311 from a document trigger at 315. At 610, the individual
topic model loadings 607, 608 and 609 are combined (e.g.,
by concatenating them together) to form the combined topic
model loadings 507.

With a web service architecture, for example, these dif-
ferent inferencers could be kept completely separate and just
called upon with simple web API calls. For example, a call
to http://localhost:8080/bokscore/services/
score?modelid=tm1&input=Data%20Science would return
an array of numeric topic loadings for the input string “Data
Science” with respect to topic model “tm1”. The length of
the array would be equal to the number of topics in that topic
model. Additionally, a REST (Representational State Trans-
fer) service call to http://localhost:8080/bokscore/services/
score?modelid=tm2&input=Data%20Science would return
an array of numeric topic loadings for the input string “Data
Science” with respect to topic model “tm2”. The length of
that array would be equal to the number of topics in that
topic model. There would be as many web API calls as there
are separate topic models. The resulting arrays would be
concatenated to yield a combined array of topic loadings,
whose length is equal to the sum of the number of topics in
all input models. (The URLs in this disclosure are provided
as examples for explanatory purposes only and are not active
hyperlinks.)

An alternative to that level of disaggregation is to allow
a single API call, in response to which separate inferences
are made for each of the component topic models, with the
results concatenated on the server and returned as an array
of concatenated topic loadings. For example, a single call to
http://localhost:8080/bokscore/services/
score?input=Data%20Science would, on the server, trigger
as many inferences as there are topic models accessed by the
server. The results of those inference calls would then be
concatenated and returned.

In this manner it is also possible to combine multiple
composite topic models. This becomes simply a process of
repeated concatenation of topic loadings, until all inferences
on all component models and respective topics are per-
formed and concatenated. For example, inference on a
multi-granularity model of the domain of data science
including four different models (with 10, 50, 100, and 500
topics, respectively) could be combined with inference on a
multi-granularity model of the domain of management con-
sulting (with 5, 20, 100, and 250 topics) to yield a concat-
enated inferred array of topic loadings with length 1,035.

Whether generated through (1) pre-inference merging of
multiple topic models, (2) post-inference concatenation of
topic loadings produced with different topic models, or (3)
mixtures thereof, the resulting vectors of aggregate topic
loadings can be used in the proposed system in many
different ways, including but not limited to:

a) serving as input vectors for dimensionality reduction,
for example in the training of a base map model 218,

b) allowing to represent a query or a document in order to
project it into a low-dimensional space, such as a
two-dimensional lattice of the neurons of a self-orga-
nizing map,

c) allowing similarity computations among text queries,
documents, and synthetic objects, such as the neurons
of a self-organizing map.

1.2.3 Multi-Model Harmonization
No matter how topic models are combined—for example

through pre-inference or post-inference combination—a fair
amount of harmonization is necessary, especially when
models were created independently of each other, by differ-
ent users, in different domains, from different input data, or
at different granularity (i.e., different number of topics).

This is different from and in addition to the traditional task
in topic modeling of eliminating so-called junk topics or
stop topics. Such topics tend to be of a syntactic or proce-
dural nature, with little in the way of semantic distinction in
the domain space of interest. Those junk or stop topics can
be either (a) ignored post-inference, such as being skipped
in similarity computations, or (b) directly removed from the
topic model altogether, and the model then used for infer-
ence. Alternatively, the terms and phrases most strongly
associated with stop topics can become stop words and stop
phrases that are then removed from the text inputs prior to
further model training or otherwise ignored during model
training (e.g., as in U.S. patent application Ser. No. 15/502,
764).

In generating merged or combined topic models, an
important challenge is the occurrence of duplicate topics. By
the nature of topic modeling algorithms, like latent Dirichlet
allocation (LDA), this is not a problem when training or
using an individual model. However, duplication and near-
duplication will tend to occur when merging multiple,
separately generated models (Table 1). Table 1 illustrates
this duplication with topics extracted from two different
topic models: a coarser one that includes 500 topics and a
finer one that includes 2500 topics. Judging by the rank-
ordering of top phrases and terms, the topics #1 and #2 are
so similar that they can be judged to be duplicates. Conse-
quently, topic #2 can be deleted from the 2,500-topic model,
resulting in 2,499 remaining topics. Topics #3 and #4 are
very similar as well, so that topic #4 can be deleted, then
resulting in 2,498 remaining topics in the finer model, etc.
Topics are generally eliminated from finer-granularity mod-
els when they are duplicates of topics in coarser-granularity
models (e.g., 2,500 versus 500 topics).

Other topics the user will typically want to eliminate
include general topics (#5, #6). At finer levels, here illus-
trated with the 2,500-topic model, the user also encounters
heterogenous topics (#7, #8). Some of these are very narrow
(#7), driven by a very small number of documents (or
sometimes even a single document) that happen to cover a
broad range of issues, for example, reflecting a mix of
methods and application domains. Heterogeneous topics can
also be driven by sources whose actual subject matter is
diverse and not inherently related, but happen to use similar
language. An example is the ambiguous language surround-
ing “training” in an educational versus machine learning
context in topic #8. Heterogenous topics, like #7 and #8,
amount to a kind of overfitting that would be deleterious for
model performance.

The effect of eliminating stop topics, general topics,
duplicate topics, and heterogeneous topics on model size
and performance can be dramatic, especially at fine granu-
larity. In an example, in harmonizing the merging of
10-topic, 25-topic, 100-topic, 500-topic, and 2,500-topic
models of the Data Science & Analytics domain, the number
of topics was reduced to 9, 23, 84, 390, and 1,097, respec-
tively. This resulted in a total dimensionality of 1,603
instead of the original 3,135.
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TABLE 1

Detection of duplicate, general, and heterogeneous topics in multi-model harmonization.

Total
Model Top Phrases Top Terms

Topic # Granularity (rank-ordered) (rank-ordered) Label � Decision

1 500 topics cognitive psychology, cognitive psychology cognitive psychology
cognitive processes, behavior perception human
human cognition, mental mental theory cognition
processes, human behavioral processes
behavior

2 2500 topics cognitive psychology, cognitive psychology DUPLICATE fi
cognitive psychologists, cognition theories DELETE
cognition, developmental psychologists thought mind
psychology psychologist thinking

developmental
3 500 topics confidence interval, interval confidence intervals confidence interval

confidence intervals, probability distribution
credible intervals, parameter uncertainty
confidence bands coverage estimate range

4 2500 topics confidence interval, interval confidence intervals DUPLICATE fi
confidence intervals, coverage lies credible DELETE
credible intervals, pivotal endpoints fiducial
coverage

5 500 topics early, early work, history early work modern history GENERAL fi
of early, early history, popular late started today DELETE
modern began limited

6 2500 topics began, history, history of began history early public GENERAL &
early, early history, began moved widespread earliest DUPLICATE fi
early renamed occurred wanted DELETE

7 2500 topics gaze estimation, gaze gaze accuracy equation svm HETEROGENEOUS
estimation accuracy, calibration estimation error (narrow sources) fi
hidden layer, marker layer experimental load DELETE
calibration, error
compensation

8 2500 topics training, learner, topics, training learner topics letter HETEROGENEOUS
letter, manual manual overfits multi-layer (diverse sources) fi

preferentially mini-batches DELETE
high-order

1.3 Base Map Creation and Deployment
1.3.1 Base Map Creation

As illustrated in FIG. 2, the base map creation process (at
203) includes three main elements: inference on documents
to create reference system scores (at 217), training of the
base map model (at 218), and visualization of the base map
(at 219).
1.3.1.1 Infer Reference System Scores

With the reference system created (at 202), in the form of
one or several topic model inferencers, the system can then
compute (at 217) for any text string a set of n topic loadings,
with n corresponding to the total number of topics. That
vector of n topic loadings represents a reference system
score. For example, in the case of the Data Science &
Analytics domain discussed above, inferences on one text
string, produced by five harmonized topic model inferencers
would yield 1,603 topic loadings. If such inference is
performed for a large number of documents, a large number
of 1,603-dimensional vectors of numeric topic loadings
could thus be generated, each vector representing the refer-
ence system score for one document.
1.3.1.2 Train Base Map Model

The creation of a low-dimensional base map model (i.e.,
train a base map model at 218) involves a process of
dimensionality reduction (DR) through which base map
elements are generated that have an associated list of n
weights (i.e. a reference system score) and low-dimensional
locator information (i.e. geometry). Two types of dimen-
sionality reduction techniques can be distinguished, namely
entity-centered and model-centered techniques, of which the
latter are better suited for base map creation and advanced
knowledge space analytics:

(1) entity-centered techniques: Discrete entities (e.g.,
documents) are represented in the high-dimensional
input space (i.e., high-dimensional vector representa-
tions) and the process of dimensionality reduction
generates a low-dimensional representation of those
same entities. For example, each document initially
represented as a vector of n topic loadings could in the
process of dimensionality reduction become repre-
sented as a point location (x,y) in a two-dimensional
space. Techniques in this group include PCA, MDS,
Isomap, and t-SNE. Characteristic to these techniques
is that they result in point geometries, with the space in
between points remaining ill-defined.

(2) model-centered techniques: While discrete entities,
represented in high-dimensional space as reference
system vectors, are used as input, the primary output
here is a low-dimensional model that exists indepen-
dently from those discrete entities and can be used as
such. One example is the self-organizing map (SOM)
technique, which arranges neurons as a low-dimen-
sional lattice. Applying this technique to an n-dimen-
sional input space, each neuron becomes associated
with its own n-dimensional vector or score and a
low-dimensional location. For any given n-dimensional
input entity, it is thus possible to first compute simi-
larities to all n-dimensional neuron vectors, then deter-
mine the best-matching neuron, typically the most
similar neuron, then retrieve the low-dimensional loca-
tion of that best-matching neuron and assign that loca-
tion to the input entity. The finished base map can thus
act as a backdrop for data that were not part of the
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training process. In conjunction with a representation
of neurons as either points or areas in common vector
geometry data models, it also becomes possible to
implement various novel analytical operations that
revolve around neurons acting as explicit connectors
between n-dimensional and low-dimensional spaces.

The base map model (trained at 218) takes the form of a
collection of a large number of base map elements, each
representing a small portion of the high-dimensional space.
Examples for base map model elements are the neurons of
a self-organizing map (SOM) or the point features that are
output from a multidimensional scaling (MDS) computa-
tion. For each such base map element, these properties are
recorded: element identifier, locator information, and a ref-
erence system score.. Locator information may take the form
of absolute coordinates (e.g., x, y) or relative location (e.g.,
row ID and column ID for regularly spaced locations). This
base map model is input to the visualization of the base map
(at 219) and is also passed or loaded (at 220) to the inference
server 204 and stored on database server 301 as the base map
elements 306.

Given the two goals of supporting (1) full base map
functionality and (2) a full range of analytical operations,
model-centered techniques (like SOM) are preferable for
base map creation and are the focus of embodiments of the
present disclosure disclosed here. However, it would be
possible to generate a base map model from the results of
entity-centered techniques (PCA, MDS, etc.), by treating the
projected entities as the equivalent of the output of model-
centered techniques and formatting them as such. These
would then be passed to the base map visualization (at 219)
and to the inference server 204. While the present disclosure
foresees and enables this, it is an inferior approach as
compared to the model-centered approach, for several rea-
sons. First, the n weights associated with a particular entity
(i.e., document) are solely derived from the actual text
content of that entity, making them susceptible to any
entity-specific idiosyncrasies that do not correspond to
actual patterns in the overall knowledge space. A model-
centered approach, by comparison, uses input documents in
a training mechanism that accentuates patterns found in
multiple documents. Second, an entity-centered base map
model is lacking control over the resolution of the base map,
which refers to the amount of detail that is displayed or that
the user can discern and the computational resources
required. For example, a base map built from 1,000,000
entities will cause a dramatically larger computational load
than one built from 100,000 entities. On the other hand, a
model-centered base map model that includes 10,000 ele-
ments (e.g., 10,000 neurons of a SOM) is likely to be able
to represent the patterns contained in 1,000,000 entities in
useful detail, but at much lower computational cost.
1.3.13 Visualize Base Map

The base map model created at 218 and the topic labels
created at 214, together with simple metadata (702) con-
taining the number of individual topics included in each of
the topic models that make up a multi-topic model, contains
everything needed to visually depict the base map. U.S.
patent application Ser. No. 15/502,764 discloses many
advantages of using cartographic principles and GIS tech-
nology with a base map, including the ability to perform
various layering and analysis in one display space, enabled
by a common locational reference system, map projections,
and flexible data models. The present disclosure differs from
U.S. patent application Ser. No. 15/502,764 in several sub-
stantial aspects. With respect to how the base map is
constructed and visualized, the combination of multiple

topic models disclosed here (at 500 and 600) leads to a very
different approach to the formation of clusters in the display
space, specifically in the computation of topic weights for
base map elements (at 707) and the computation of topic
ranks for base map elements (at 708). (U.S. patent applica-
tion Ser. No. 15/502,764, filed Oct. 10, 2015, is incorporated
herein by reference.)

The field of GIS has long known that a given geographic
feature may be simultaneously represented by multiple
geometric structures in a database. For example, the city of
San Diego may alternatively be represented as a polygon
feature or a point feature or subsumed in other features (e.g.,
within California, the United States, or North America).
There will even exist multiple versions of polygon repre-
sentations of the same city, each reflecting different levels of
cartographic generalization to fit the map purpose and
scale/zoom level. The present disclosure takes inspiration
from the success of these multi-scale geographic represen-
tations in the design of multi-scale visualizations of knowl-
edge spaces.

An example is shown in the flowchart of FIG. 7 for the
process for constructing a visualized base map (i.e., the base
map visualization at 219) of FIG. 2, in accordance with some
embodiments. The base map visualization process 219 pro-
duces the base map 704 based on the labeled topic models
701 produced at 214 and the base map elements 306
produced at 218 and multi-model metadata 702 about the
multi-topic model. The particular steps, order of steps, and
combination of steps is shown for explanatory purposes
only. Other embodiments may use other steps or combina-
tions of steps or in a different order to perform the same
general functions. Additionally, one or more applications,
routines and physical devices can perform the process 219.

Based on the base map elements 306 and depending on
the specific locator information stored with base map ele-
ments, further geometric information may be computed for
base map elements at 705 and 706. For example, if the
geometry information stored for base map elements 306
does not contain point geometry, then point geometry may
be computed (at 705) for each base map element. After 705,
if base map elements do not contain polygon geometry, then
polygon geometry is generated (at 706) for each element. An
example is the generation of Voronoi regions or Thiessen
polygons from point geometry. Additionally, based on the
base map elements 306, topic weights are computed (at 707)
for each element. After 707, based on the topic weights and
the multi-model metadata 702, topic ranks are computed (at
708) for each element. The rank of a topic for a given base
map element computed (at 708) is dependent on the weight
or numeric value of the topic in consideration of all weights
or numeric values of topics for the base map element and
information received from the multi-model metadata 702. In
some embodiments, this may involve ranking of topic
weights separately for each component model of a multi-
topic model. In other embodiments, ranking may be per-
formed across multiple component models of a multi-topic
model.

After 706 and 708, based on the point geometry, polygon
geometry and the topic ranks, the topic ranks are joined (at
709) to the element geometry (point geometry and polygon
geometry) for each element. This joining is enabled by the
base map element identifier stored with each base map
element in the base map elements 306. At this point (after
709), every base map element has associated with it a
polygon geometry and information about topic ranks. After
709, the polygons representing element geometry are
merged (at 710) by dissolving boundaries between adjacent
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polygons if they refer to the same topic at a particular rank.
This merging of polygon geometries leads to the formation
of clusters, with each cluster representing a particular topic.
After 710, based on the topic labels 701 and the clusters
formed from element geometries, label attributes are joined
(at 711) to the cluster polygons, thereby forming and storing
cluster polygons with label attributes 703. Based on the
cluster polygons with label attributes 703, the placement of
labels for the element clusters is determined and cluster
labels are placed (at 712), and symbolization for the element
clusters is determined and clusters are symbolized (at 713).
Additionally, after 707, based on the topic weights of the
elements, an elevation layer is created (at 714), such that
locations within the low-dimensional space obtain elevation
information, e.g., when the low-dimensional space has
three-dimensions. In some embodiments, this may involve
interpolation of individual or combined topic weights across
the low-dimensional space. After 714, symbolization for the
terrain is determined and the terrain is symbolized (at 715)
for the base map. Then the terrain symbolization, cluster
label placement, and cluster symbolization are assembled to
form the base map 704. Additional details of the process 219
are described below.

Since base map models will often include thousands of
elements (e.g., 10,000 neurons in a 100-by-100 neuron
SOM), each such element may participate in multiple cluster
solutions—from coarse clusters to fine clusters—that each
will be stored as polygon geometry with associated label
attributes (703) that are placed at appropriate locations
(712). The base map (704) includes prescriptions of the
zoom levels at which each of the base map layers are
displayed. While this follows the prescription of U.S. patent
application Ser. No. 15/502,764, the current disclosure
makes key advances to clustering of base map model
elements that derive from the novel multi-model approach to
topic modeling and thus were unanticipated by U.S. patent
application Ser. No. 15/502,764.

Tables 2a-2d, displayed in FIG. 29, illustrate how base
map models created from multiple topic models may support
multiple means for generating and displaying clusters of
map elements and their labels. First, Table 2a illustrates
details of how the ranking of topics within each base map
element relates to clustering of elements. In each case, a
given base map element is associated with a vector of topic
loadings. This vector of n loadings obtained from the base
map elements 306 may be used in raw form or topic loadings
may be normalized (at 707) according to commonly used
methods, such as z-score, min-max normalization, or unit
vectors. The resulting topic weights are then ranked within
each base map element (at 708). Ultimately, the rank held by
a particular topic within a particular element will determine
the scale or size at which that topic is visualized in the base
map for that element. The top-ranked topic would be used at
a high-level small scale (i.e., overview), while a lower-
ranked topic would be used at a low-level larger scale (i.e.,
detailed view) (as shown in Tables 2a-2d).

Table 2a illustrates in detail how this ranking of topics
translates into clusters that are then displayed at various
scales. Any number of base map elements and any appro-
priate number of ranks can be used. In the example of Table
2a, however, details are shown for seven base map elements
out of a large base map model that includes 10,000 elements
with only three ranks. Base map elements 1, 2, 3, 5547, and
5548 all have Topic 2 as their top-ranked topic. Accordingly,
Topic 2 will supply the label that will be used to visualize
these elements at a high-level, small, overview scale. Fur-
ther, since elements 1, 2, and 3 are neighbors in the two-

dimensional space, the polygon boundaries between them
will be dissolved (e.g., at 710) to form a cluster polygon
(e.g., at 703) for topic 2. Elements 5547 and 5548 are
neighbors and have the same Topic 2 as top-ranked topic, so
their polygon boundaries are also thus dissolved. However,
since they are far away from elements 1, 2, and 3 in the
display space, this will result in another polygon being
created for topic 2. Topic 2 thus becomes represented by
multiple, discontiguous cluster polygons (e.g., at 703),
reflecting different contexts in the knowledge space.

When the base map model is constructed (e.g., at 704)
from multiple topic models, then metadata 702 about them
must be supplied suppled, which contains information about
the number and size of topic models. The system can then
either rank topics across all models (as shown by Table 2b)
or perform ranking constrained by individual models (as
shown by Tables 2c and 2d).

Table 2b illustrates how this works for one base map
element and a nine-dimensional reference system score
involving three topic models, each including three topics.
The top-ranked topic for the element (“1”) happens to be the
top-ranked topic for model 3. The second-ranked topic (“2”)
happens to be the top-ranked topic for model 1. The third-
ranked topic (“3”) is the second-ranked topic for model 1.
The fourth-ranked topic (“4”) is the top-ranked topic for
model 2, etc. Correspondingly, at high-level small scales,
this base map element will be expressed through labels for
the top-ranked topics of models 1 and 3, while the top-
ranked topic of model 2 will only come into play at
intermediate-level medium scales. This approach leaves an
opportunity for model 2, while of secondary fit for this base
map element, to play a more dominant role elsewhere on the
map. In other words, ranking across multiple models allows
for different models to play different roles in different
regions across the map.

At other times, the nature of the models being used in
multi-model base maps will justify more stringent segmen-
tation of reference system scores, with ranking of topics
constrained within their respective models. Table 2c illus-
trates this for multi-granularity models, namely a twelve-
dimensional reference system score to which three models
contributed: a coarse detail model of three topics, a medium
detail model of four topics and a high detail model of five
topics. Multi-granularity models realistically involve a much
larger range in model size, from models that include a
handful of topics to models involving several hundred topics
or more. This range in granularity lends itself to a very
straightforward translation of within-model ranks to scale-
dependent clusters. In the example in Table 2c, only the
top-ranked topics within each model are utilized, with the
top-ranked topic model 1 used in small-scale clusters, the
top-ranked topic of model 2 used in medium-scale clusters,
etc.

Table 2d illustrates a different scenario, with topic models
created for different domains being integrated. For example,
a base map can be built from topic models for cybersecurity,
machine learning, and software engineering. Here, the top-
ranked topics of the different models are treated as equals in
the creation of clusters. There will thus be three top-level
cluster layers available for display at high-level small-scale.
While this may seem to introduce graphic conflicts in the
base map, the strong layering and labeling controls of
contemporary GIS software make it feasible to resolve such
conflicts with ease.

The range of ranking approaches laid out above allow the
creation of base maps that contain a great amount of
conceptual detail about a knowledge space, in a uniquely
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coherent visual manner. For example, FIG. 8 shows an
example base map 800 with an overlay of cluster symbols,
cluster labels, and terrain showing the hierarchical structur-
ing of a “business” region, where the “markets & customers”
area includes “financial market”, “corporate action”, “elec-
tronic commerce”, “marketing”, and “economic growth”.
Each of these topical regions contains further detail, which
is revealed upon zoom-in. FIG. 4 shows an example of the
effects of scale changes between three zoom levels; how-
ever, any appropriate number of zoom levels may be used.
While all this evokes the hierarchical structures typically
encountered in formal domain ontologies and knowledge
graphs, the present disclosure lets these relationships emerge
without ever needing access to such graph-type representa-
tions, in a clear departure from the dominance of knowledge
graphs in knowledge management technology.
1.3.2 Base Map Deployment

Contemporary GIS technology provides comprehensive
solutions for capturing, storing, manipulating, analyzing,
sharing and displaying of geographically referenced data.
The disclosed methods and systems provide a unique solu-
tion for how those capabilities can be applied to data that are
not referenced in geographic space, but in a high-dimen-
sional space. Once the base map elements 306 are available,
point geometry (at 705) and polygon geometry (at 706) can
be derived therefrom for base map elements, and then the
full complement of hundreds of GIS functions become
applicable. These include relational joins (e.g., at 709, 711),
merging of polygons (e.g., at 710), GIS database storage
(e.g., as with the cluster polygons with label attributes 703),
raster interpolation (e.g., as with the elevation layers created
at 714), and a rich choice of symbolization methods (e.g., at
712, 713, 715). Further, the separation of data into layers in
GIS allows flexible combination of symbolized layers in the
base map (704), including scale-dependent display, where
layers are shown only within certain zoom levels.

All this makes it possible to then utilize proven web GIS
technologies to deploy the base map, despite those tech-
nologies having been created for a completely different
purpose. The map server component 207 (FIG. 2), using
conventional map server technology, can serve the base map
in the form of a Tile Map Service (TMS) 208, Web Map
Service (WMS) 209, Web Feature Service (WFS) 210, or
similar standards-based services. Examples for GIS server
software that can be used to that end include ArcGIS Server,
QGIS Server, GeoServer, MapServer, and others.

One embodiment for the complete process of publishing
the base map on a map server (e.g., 207) involves setting up
symbolization and scale dependency of each base map layer
in the TileMill software, exporting the complete base map to
the MBTiles format, importing that MBTiles file to Geo-
Server, and publishing the complete base map as a layer
using the WMS standard, with map tiles formatted in JPEG
format. The base map is then fully accessible, including
interactive zooming in a web browser (FIG. 9), via a simple
URL, like in this snippet for a base map of the management
consulting domain:

“http://localhost:8080/maps/MGMT/
wms?service=WMS&version=1.3.0&request=
GetMap . . . ”

An image is shown in FIG. 9 of an example user interface
900 with a base map 901 being served using the URL 902
in accordance with a map server component 207 (FIG. 2), in
accordance with some embodiments. The WMS version, the
tiling style, the desired antialias, the image format, the
presentation style, and the width/height are also selected in
the user interface 900.

The maturity of web GIS technologies is such that other
embodiments could involve publishing the base map using
a different combination of GIS server software and deploy-
ment settings. For example, different server software (re-
placing GeoServer), different services provided (replacing
WMS), and different image formats used (replacing JPEG).

It would also be possible to forego GIS server software
completely, such as in an embodiment where the MBTiles
file is converted to a tiled web map using a suitable software,
like MBUtil. The result is also known as a slippy map or
XYZ map, with map tiles stored in the PNG format and
arranged in a hierarchical folder/file structure. In that case,
the map server functionality (e.g., 207) can be fulfilled by a
general-purpose web server and the tiled base map can be
displayed in a web browser using any compatible web
mapping framework. Examples of compatible frameworks
include Leaflet, OpenLayers, and Google Maps API.
1.4 Map Overlays in Knowledge Space

The very idea of the base map is that it may serve as a
common base onto which a wide variety of data could be
overlaid. That implies the existence of an inference mecha-
nism for accomplishing this. In traditional cartography and
GIS, the answer has been to (1) express the location of an
entity in the locational reference system, such as latitude and
longitude, then (2) project those geographic coordinates to a
flat, two-dimensional map coordinate system via map pro-
jection formulas, and (3) use those map coordinates to
position cartographic symbols. This is what the systems and
methods described here accomplish, except that they deal
with knowledge space instead of geographic space and with
knowledge artifacts instead of geographic phenomena and
that a high-dimensional reference system based on topic
models and a two-dimensional map coordinate system based
on dimensionality reduction are being used.

In implementing base maps, deliberate use is made of
existing GIS standards and web mapping frameworks, mak-
ing it possible to leverage commodity GIS and mapping
technology for deployment. However, the differences
between geographic space and this approach to representing
knowledge space are such that it would not be obvious how
to actually implement overlays of knowledge artifacts onto
a base map.

Knowledge artifact here refers to any artifact whose
content is suitable to undergo topic inferencing, with the
result expressed as a reference system score. Overlay refers
to the process of determining and visualizing the location of
the artifact in the low-dimensional base map space. Since an
inferred reference system score and the reference system
scores associated with base map elements are of the same
dimensionality n, one can readily compute the similarity
between an artifact and a base map element, using any
common similarity measure, such as Cosine, Euclidean, and
others. When this is done for one artifact over all base map
elements, it populates what is referred to herein as a map
score, i.e., a vector of similarity values. The length of that
vector is equal to the number of base map elements. For
example, if the base map includes 10,000 elements, then a
map score for a given artifact will include a vector of
similarities of length 10,000.

Since each base map element further has a defined loca-
tion in the two-dimensional map space, a map score effec-
tively encodes a magnitude distribution of the artifact across
the map space. That inferred spatial distribution is the basis
for any overlay of the artifact in the map space. Analyzing,
slicing, and subsetting of a map score is the basis for the
different types of overlays, such as point overlay, line
overlay, area overlay, or surface overlay.

US 11,650,073 B2
23 24

5

10

15

20

25

30

35

40

45

50

55

60

65



Anything encoded using text strings expressing content
related to the domain can be meaningfully treated as an
artifact to be overlaid in the map space. Two key types of
such artifacts are text documents and user-specified text
queries. In other words, the system can receive a query text
that a user types or pastes into the user interface, and then
the system can project that text into the map space or,
alternatively, the system can extract the text content from a
document and then project the text content of that document
into the map space.

On-demand computation of overlays can be initiated by
issuing a Base Map API call (at 206) to the Inference Server
204, with the query content populated by typing or pasting
of an input text string as shown in a process 1000 of the
flowchart in FIG. 10 performed by the application server
302. The particular steps, order of steps, and combination of
steps is shown for explanatory purposes only. Other embodi-
ments may use other steps or combinations of steps or in a
different order to perform the same general functions. Addi-
tionally, one or more applications, routines and physical
devices can perform the process 1000.

A text input or overlay is provided to or entered into (at
1001) the application server 302. Thus, the text-based query
310 is entered as either an input text string or a URL (or
other resource locator information). If the input text string is
not a pointer to a resource, like a URL, but instead includes
plain-text content itself, then it can be passed directly to the
inferencer(s) for the performance of topic inference (at
1003).

On the other hand, if the input text string is provided as
a URL, URI, file path name, or other resource locator
information, then the respective resource is accessed, con-
tent retrieved or extracted (at 1002) and then passed (as a
text string) to the inference(s) at 1003. Concrete examples
for such resources include URLs of web pages, URIs that
encode calls to other APIs, and the location of locally stored
files. One advantage of such resource locator information is
that it allows to effectively pass to the inferencer(s) the
content of much longer documents than would typically be
allowed when input text is directly included within Web API
calls. That is particularly useful when Web API calls for
query overlays are issued from web applications running in
a web browser.

The performance (at 1003) of topic inference is based on
the received or extracted text string and the topic model
inferencers 304 accessed (at 1004) from the topic model
inferencer (with inferencer IDs, “inferencerid”) in the data-
base server 301. The application server 302 generates an
overlay reference system score 1005 (i.e., a reference system
score generated for the purpose of generating the overlay of
a text input) by the topic inferencing at 1003. When using a
multi-topic model approach, the overlay reference system
score 1005 corresponds to the combined topic model load-
ings 507. At 1006, the application server 302 computes a
value for the similarity between the overlay reference sys-
tem score 1005 and the reference system scores of base map
elements 306 (with base map element IDs “bmeid”)
accessed from the database server 301 at 1007. This pro-
duces an overlay map score 1008. At 1009, the application
server 302 constructs the geometry for the query response
based on the overlay map score 1008 and the geometry
information accessed from the database server 301 at 1010
for the base map elements 306. At 1011, the application
server 302 builds an overlay of the query response 313 based
on the constructed geometry. The application server 302
then passes the query response 313 to the web server 303 for
the map display 317.

The following shows an example Base Map API call (at
206) to an overlay service hosted by the Application Server
302:

http://localhost:8080/DATA/services/overlay?inputType=query&ge
omType=point&input=GPS

In this example, the inference engine of the base map is
accessible as an application at the URL http://localhost:
8080/DATA. It exposes overlay capabilities through the
overlay end point. The parameter inputType specifies that a
query is to be overlaid. The type of geometry to generate is
indicated by the geomType parameter, here specifying point
geometry. The input parameter contains the text string on
which inference is to be performed, here “GPS”.

As compared to U.S. patent application Ser. No. 15/502,
764, there are significant differences in how overlays are
computed, due to the use of multiple topic models in the
creation of the base map and in performing inference.
Further, disclosed below is an expanded set of geometry
types. Whereas U.S. patent application Ser. No. 15/502,764
involved only a single topic model and described approaches
to generating point and landscape overlays from text input,
the present disclosure additionally describes approaches to
generate line overlays and area overlays from text input.
This allows supporting significantly different analytical
tasks, for example tracking evolution of an author’s writings
over time as a trajectory across the knowledge space (i.e.,
line overlay) or the detection of gaps in someone’s skills.

An example for the use of resource locator information is
shown in the following Base Map API call, with the query
being passed (e.g., at 1001) as a URL encoded string, to
ensure proper handling:

http://localhost:8080/DATA/services/overlay?inputType=query&ge
omType=point&input=
https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlobal—Positioning—Sys
tem

Note the implications of the difference between the two
example calls. An input of “GPS” would process a single
text token, compute a reference system score, a map score,
and finally a point location. In contrast, the input of https://
en.wikipedia.org/wiki/Global_Positioning_System is
detected to be a URI, based on the https prefix, triggering the
retrieval of the content of a Wikipedia page, the full content
of which is then presented for inference to compute a
reference system score, a map score, and finally a point
location.

A key architectural advance of the system lies in its
leveraging of GIS principles and GIS standards for non-
geographic locations. This is illustrated by this Base Map
API response in the point overlay of “GPS”:

{
“features”: [{

“geometry”: {
“coordinates”: [
-127.4814,
0.0071

],
“type”: “Point”

},
“type”: “Feature”,
“properties”: {
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-continued

“mapelementid”: 9182,
“cat”: “query”,
“fit”: 0.57,
“label”: “GPS”,
“time”: “Thu Mar 18 17:54:24 UTC 2021”,

}
}],
“type”: “FeatureCollection”

}

This response uses the GeoJSON format, which is a
widely adopted open standard for representing simple geo-
graphic features and associated attributes. In this example,
the use of geographic coordinates (longitude: -127.4814,
latitude: 0.0071) and the provision of various properties that
can be used for filtering and symbolization, such as the fit,
which is the similarity value for the most similar base map
element. As an output format, GeoJSON accommodates all
the geometry types that could be specified in the overlay
query, including points, lines, polygons, and landscapes. As
would be expected, each of the different geometry types may
involve additional parameters, as indicated in the sections
below.

Further, the use of multiple topic models advanced in the
present disclosure allows further analytical control over
overlays. Specifically, when computing map scores, i.e.,
computing similarities between an inferred reference system
score and the reference system scores associated with base
map elements, it is possible to assign different weights to
different segments of the reference system score. For
example, for a reference system score involving a model of
the domain of biology and a model of the domain of
informatics, the topics associated with the two models may
be weighted differently. Reasons for doing so may include
an observed imbalance in the content of overlaid queries or
the desire to focus on aspects of a particular domain. Such
nuanced weighting of topic segments is also advantageous
when dealing with multi-granularity topic models. There it
is then possible to counteract the fact that inference using
coarser topic models tends to produce loadings with higher
absolute values as compared to those using finer topic
models, causing the coarser segment to dominate the simi-
larity computation. As an example, in the multi-granular
Data Science & Analytics model producing a reference
system score of 1,603 dimensions (9+23+84+390+1,097)
the first segment of nine topics produces much higher
loadings than the last segment of 1,097 topics (the last five
of which are listed here):

[0.02438, 0.02979, 0.73797, 0.03724, 0.02251, 0.02928,
0.04904, 0.02917, 0.04058, ... , 0.00120, 3.74846E-4, 0.00136,
0.00127, 0.00112]

1.4.1 Point Overlay
If the goal is to overlay a query as a point feature, then the

location of that point feature will correspond to the location
of the base map element that is most similar to the query.
Specifically, first a reference system score for the query
(overlay reference system score 1005) is computed by
performing topic model inferencing (e.g., at 1003). Second,
a map score is determined based on the similarities between
the overlay reference system score and the base map ele-
ments (e.g., at 1006 and 1008). Third, the base map element
with the strongest similarity will be the source of the point
location for the query. All this is enabled by the fact that the

base map elements 306 contain the base map element
reference system scores in the high-dimensional knowledge
space (i.e., a vector of weights equal in length to the total
number of topics) and the geometry information in the
low-dimensional map space.

Depending on the specific similarity measure used, the
specific computation used to determine the most similar base
map element will differ. For example, if using the Euclidean
similarity measure, then the base map element with the
lowest value within the map score will be the most similar
one. In other cases, the most similar base map element will
be the one with the highest value within the map score, like
when using the cosine similarity value.
1.4.2 Line Overlay

If a query is presented as a linear sequence or otherwise
a linearly connected set of text inputs, then for each of these
inputs a high-dimensional topic vector can be inferred. Each
such topic vector is then projected onto the base map, based
on its similarity to the reference system scores of base map
elements, and a low-dimensional geometric vertex is deter-
mined. When the resulting vertices are linked in their
prescribed sequence, then they will follow a low-dimen-
sional trajectory, which can be visualized with a line symbol
and overlaid on the base map. For example, if four text
inputs are presented in a prescribed sequence, then four
n-dimensional topic vectors are inferred, then four map
score vectors are computed, each yielding one point loca-
tion, and the four point locations are connected to form a line
feature that is visualized as the line overlay.

The following are some examples for the kinds of
sequences of text inputs that can drive the generation of
trajectories or line overlays:

a) Explicitly prescribed sequence of discrete text chunks,
such as providing a sequence of text input fields, each
receiving different inputs by typing, pasting, voice
input or some other suitable technique that provides
text strings. For example, as compared to the use of a
single text input field illustrated in FIG. 11, additional
text input fields can be provided for.

b) A set of text inputs accompanied by metadata fields that
prescribe the desired ordered sequence, e.g., time
stamps accompanying separate text items in a database.
If multiple trajectories are to be visualized, differenti-
ated according to entities, then text inputs should be
accompanied by suitable entity identifiers, like the
organization, author, etc.

c) Corresponding to an observed or inferred graph struc-
ture of text chunks, such as extracted from social media
content networks (replies, forwards, etc.) or corre-
sponding to some other network structure, such as
social media follower networks, co-citation networks
and the like.

d) Derived through linguistic chunking of flowing text,
such as based on turn-taking in recorded conversations.

1.4.2.1 Constructing Line Geometry
In order to visualize line objects, individual vertices, each

corresponding to a discrete portion of the overall query, are
connected in a prescribed sequence. This could be done
either on the client or server side.

If line geometry is to be constructed by the client, then as
many calls for point overlays are issued as there are query
portions and one point location is extracted from each
response to serve as a vertex of the line feature. For example,
for a query that includes a sequence of four portions, four
point overlay calls are made and the resulting four query
responses are parsed.
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Alternatively, all query portions can be sent as a single
API call to the server and a single response is received that
includes a line feature, in which each vertex corresponds to
one of the query portions. Here is an example of a Base Map
API call for the overlay of five query portions as a line
feature, with each portion separated by double underscores:
http://localhost:8080/DATA/services/
overlay?inputType=query&geomType=line&input=
1G_2G_3G_4G_5G. The response would trace the history
of cellular communications as a line feature in the map
space.
1.4.3 Area Overlay
1.4.3.1 Extracting Base Map Elements

Whereas individual point overlays or the individual ver-
tices of line overlays are based on finding base map elements
with peak similarity, area overlays translate the query into a
grouping of multiple base map elements. Suitable bases for
such grouping include count thresholds, similarity thresh-
olds, and other means to select entries from the query map
score. In the case of a count threshold of n, the top n
highest-similarity base map elements may be retrieved. For
example, if a count threshold of ten is chosen, then a
maximum of ten base map elements with the highest simi-
larity values are retrieved for the query response.

In the case of similarity thresholds, base map elements
may be selected based on similarity values in the query map
score. This will typically take the form of a minimum
similarity threshold, but could also be constructed as a
similarity band, with a minimum threshold different from the
minimum observed similarity value and a maximum thresh-
old different from the maximum observed similarity value.
This allows examining nuanced patterns in similarity
between the query and the base map.

This is an example of a Base Map API call for the overlay
of the query string “GPS” as a polygon with a minimum
similarity threshold of 0.1:

http://localhost:8080/DATA/services/overlay?inputType=
query&geomType= polygon&threshold=0.1&input=GPS

1.4.3.2 Constructing Area Geometry
Once a subset of base map elements is identified by

thresholding of values within the query map score, those
individual base map elements are transformed into an over-
all area geometry.

If base map elements are only stored as point or line
geometry, then individual areas are first generated through
suitable geometric functions, which are commonplace in
off-the-shelf GIS software and software libraries. An
example for such a function is the creation of area buffers,
with each base map element being represented as a buffer of
defined maximum distance from its original point or line
geometry. Another example is the creation of Thiessen
polygons or Voronoi regions, which generates a space-filling
tessellation of the complete map space.

Individual areas are then merged through what is known
as the Dissolve operator in GIS software, which dissolves
boundaries between neighboring areas. As a result, contigu-
ous regions of individual base map elements can form large
areas. Further, any discontiguity among individual base map
elements leads to the emergence of discontiguous areas. This
allows identifying secondary regions in the knowledge space
matching the query. For example, FIG. 12 involves the same
query string as FIG. 11, but the area overlay (FIG. 12, top
image) reveals a secondary match 1201 in the “semantic
web” area (FIG. 12, middle image), in addition to the

primary match 1202 in the “vector space” area (FIG. 12,
bottom image) that contains the location of the point overlay
1101 (FIG. 11).

Another advantage of this method of merging the area
geometry of neighboring base map elements is that it allows
the discovery of gaps or structural holes in the query with
respect to the base map. As an example, FIG. 13 shows an
area overlay 1301 produced by a text query that included a
concatenation of the resumes of several speakers at a data
science conference. The overlay reveals a hole 1302 or
absence of expertise in a region labeled as “smart city” in the
base map.
1.4.4 Landscape Overlay

The point, line, and area overlays of queries rely on
identifying a subset of base map elements (at 1007) based on
the similarity values that are captured by the query map
score 1006 derived from query input 1001. In contrast, the
landscape overlay of a query utilizes the full query map
score 1006 when constructing geometry at 1007. The most
straight-forward approach includes assigning to each base
map element a symbol that is proportional to its value in the
query map score 1006. The field of cartography provides a
rich set of techniques for implementing this, such as pro-
portionally sized point symbols or choropleth mapping. A
more computationally involved option includes interpolat-
ing contour lines. Either way, the landscape overlay will
express the spatial variation of similarity values across the
map space.
1.4.5 Multi-Query Overlay

The notion of the base map, supported by an underlying
inference engine, as presented here, makes it possible to
overlay not only one individual query, but multiple queries
(FIG. 14). That gives rise to a new form of spatial analysis,
in which the spatial relationships among a larger number of
overlaid queries can be investigated. Within the realm of
spatial analysis, point pattern analysis (FIG. 14, top image
showing three point overlays 1401, 1402, 1403) and polygon
overlay analysis (FIG. 14, bottom image showing three area
overlays 1404, 1405, 1406, corresponding to the point
overlays 1401, 1402, 1403, respectively) are typical
approaches, and could be fed by simply sequencing a series
of individual overlays. In some embodiments, the visual
appearance of multiple overlaid queries may be varied, for
example using different colors or symbols. FIG. 14 illus-
trates the visualization of three queries, for “cybersecurity”
(1401 and 1404), “blockchain” (1403 and 1406), and “pri-
vacy” (1402 and 1405).
1.5 Documents in Knowledge Space

The system put forth here not only allows the visualiza-
tion of individual artifacts or a small number of artifacts onto
the base map. But also, the provision of a base map and
inference engine allows the integration of large numbers of
documents in the knowledge space, supporting analytical
operations unlike anything previously proposed or demon-
strated. Notably, this novel approach allows the integration
of documents that were not used during base map creation.
1.5.1 Database Server

As explained above, when a visualization of the base map
in the map server is combined with an application server
performing inference on a query that produces an individual
text string, the system can first compute a reference system
score for that text string, then compute a map score express-
ing the similarity of the reference system score to each base
map element (i.e., the vector of similarity values), and then
visualize that similarity vector in form of a point, area, or
landscape feature. When a sequence of two or more text
strings are used to represent an artifact, it is further possible
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to create a line feature. Even though overlays involve
multiple inference steps (e.g., to produce the reference
system score, base map score, and geometry), the process is
quite fast for a small number of queries, like when three
queries are overlaid in sequence (as in the example of FIG.
14). For example, in experiments involving a topic model of
1,300 topics and a base map model that includes 10,000
elements, a text query being entered through a web front-end
application (see query input “cybersecurity” in FIG. 14)
took just over 70 ms to generate a point overlay.

However, this also implies that, when hundreds or thou-
sands of artifacts are to be overlaid on a base map of
thousands of elements, then batch computation of inferences
and storage of inference results are advantageous. That is
what the Database Server 301 provides, including storage of
several types of data. Some of these involve data produced
by the processes of the reference system creation component
202 and base map creation component 203, respectively, and
are the topic model inferencers 304 and the base map
elements 306. The topic model inferencers 304 store seri-
alized inferencers that are deserialized as needed to perform
inferences. The base map elements 306 store geometric
information about the location of base map elements in map
space and the reference system scores that characterize the
location of base map elements in the high-dimensional topic
space. The database server 301 also provides access to
documents, either on the same server or from a separate
document server. Further types of data are generated through
batch processing of documents. These include reference
system scores (e.g., 305) and map scores (e.g., 307). Note
that the different types of data could be stored on a single
server or in a distributed manner, each on its own server.

There is a module for batch computation (at 308) of
reference system scores 305 that performs topic model
inferencing on an arbitrary number of documents. The
resulting scores 305 are stored with a document identifier as
additional property. Since the computation of a reference
system score for any one document is independent from that
of any other document, this process is very suitable for
speedy parallel processing. The same is true for the com-
putation (at 309) of map scores 307, during which for every
reference system score accessed from 305 a map score is
computing. This map score is a similarity vector that is equal
in length to the number of base map elements. Each map
score is stored, together with a document identifier, in the
map scores 307.
1.5.2 Search in Document Spaces

The different types of data provided by the database server
301 support new forms of interaction, exploration, and
discovery in knowledge spaces. This includes exploiting
patterns involving individual documents and groups of
documents, once documents are projected into the same
high-dimensional space (performed as topic model inference
and stored as reference system scores) and low-dimensional
space (performed via similarity computation and stored as
map scores). Document search—or the scoring, filtering,
and display of documents in response to a query—is a key
example of what can be accomplished. The representation of
artifacts in three different forms in the database server
301—as text documents (in the document database 201),
reference system scores 305, and map scores 307—is what
affords a rich and flexible set of mechanisms for document
search. This includes text-based queries 310, document-
based queries 311, and map-based queries 312.

The API through which the corresponding interaction
with the inference server component 204 is handled is called
the reference system API 205, reflecting the central role
played by the high-dimensional reference system in the
processing of queries.

A distinction can be made between how a reference
system score for a query is determined depending on the
different query triggers, such as the triggers at 314, 315 and
316 for the text-based queries 310, document-based queries
311, and map-based queries 312, respectively. However, in
each case, once the query is transformed into a query
reference system score, its similarity to the reference system
scores 305 stored in the database server 301 can be evalu-
ated. Documents from the document database 201 are then
processed according to similarity to the query (as shown in
a process 1500 in the flowchart of FIG. 15).

The particular steps, order of steps, and combination of
steps of process 1500 is shown for explanatory purposes
only. Other embodiments may use other steps or combina-
tions of steps or in a different order to perform the same
general functions. Additionally, one or more applications,
routines and physical devices can perform the process 1500.

Using the received text-based query 310, document-based
query 311, or map-based query 312, the application server
302 determines the query reference system score 1505
described above. At 1501, the application server 302 deter-
mines the query-to-document similarity (similarity scores)
using the query reference system score 1505 and the docu-
ment reference system score 305. At 1502, the application
server 302 uses the document ID (docid) to get or access the
metadata for the documents from the document database 201
and combines this metadata with the similarity values. For
each document, the document ID, metadata, and similarity
value is passed as attributes to 1504 Additionally, at 1503,
the application server 302 uses the document IDs (docid) for
the documents to get or access the geometry of the docu-
ments from the map scores 307. Then, using the attributes
obtained at 1502 and the geometry of the documents
obtained at 1503, the application server 302 builds (at 1504)
the query response 313. The query response 313 can be used
as input to the map display 317 and the list display 318.

The following is an example for a text-based query
(“type=text”) of a specified portion of document database
201 (“collection=scidata”), with the text to be extracted
from the URL supplied by the input parameter:

http://localhost:8080/DATA/services/query?collection=scidata&t
ype=text&sort=minscore&size=100&input=https%3A%2F%2Fen.wikiped
ia.org%2Fwiki%2FGlobal—Positioning—System

Further parameters could be added as needed, examples
being temporal filters (“startdate”, “endsdate”), maximum
dissimilarity threshold (“maxdissim”), maximum number of
retrieved items (“size”), a parameter on which to sort
retrieved items (“sort”), and other parameters leveraging
properties of document content, document metadata, refer-
ence system scores, and map scores.

The following shows an example response (i.e. 313) to
that above query, with data for the top two documents
shown, including retrieved point locations, allowing imme-
diate visualization of the query results in the map:
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{
meanscore: 0.33,
minscore: 0.090,
count: 100,
maxscore: 0.454,
type: “FeatureCollection”

“features”: [
{

“geometry”: {
“coordinates”: [
-127.48144,
0.007039

],
“type”: “Point”

},
“type”: “Feature”,
“properties”: {

“score”: 0.090,
“cat2”: “Science China Technological Sciences”,
“cat3”: “Sci. China Technol. Sci.”,
“cat”: “Zhang JianJun and Xue Ming and Xie Jun”,
“id”: “2cdcd221-3c6a-34a3-8bfc-b23736f7c560”,
“label”: “Research on assessment method of intrasystem and intersystem

of the global navigation satellite system”,
“time”: “2015-07-09”

}
},
{

“geometry”: {
“coordinates”: [
-127.481465,
0.007025

],
“type”: “Point”

},
“type”: “Feature”,
“properties”: {

“score”: 0.100,
“cat2”: “Sensors”,
“cat”: “Dabove, Paolo and Manzino, Ambrogio M.”,
“id”: “9c0a4677-93e6-3ddb-b786-b00e3abb83e4”,
“label”: “GPS & GLONASS Mass-Market Receivers: Positioning Performances

and Peculiarities”,
“time”: “2014-11-25”

}
},

...
}]}

1.5.2.1 Visualizing the Query Response
The query response 313 returned by the Reference System

API contains information that allows visualization of the
discovered documents in the map space (at 317) and as a
sortable list (at 318). The query response also contains data
that can be used for symbol styling and similar operations.
Examples are the maximum and minimum scores of the
documents contained in the query response, which allow
size scaling and color scaling (e.g., where size, color and
shading indicate relevance of underlying documents) in a
map display 1601 and a list display 1602 (FIG. 16).
Examples of map displays 1703-1705, the list display 1602,
and a content display 1706 are also shown in FIG. 17.

The map and list displays 1601 and 1602 both allow
point-and-click selection of documents and having selected
documents visually highlighted using the methods of feature
overlay, including but not limited to point overlay (FIG. 16)
and polygon overlay (FIG. 17). Different embodiments
could symbolize these overlays in many different ways, in
accordance with the full range of techniques known in the
fields of cartography and data visualization. As one example,
for the point overlays in FIG. 16, the size of the point overlay
circles are indicative of the similarity score, e.g., larger size
indicates a better similarity score, and smaller size indicates
a worse similarity score. Generating the feature overlays is

sped up by having the map scores 307 of individual docu-
ments stored in the document database 201, from which
specific geometry for the feature overlays can then be
constructed on-the-fly, such as point, line, polygon, or
landscape. This flexibility in document visualization allows
an examination of more subtle patterns in how a document
fits into the map space. For example, the top-ranked docu-
ment in the query for the Wikipedia page on GPS (“https://
en.wikipedia.ordwiki/Global_Positioning_System”) has its
best fit (point location) in the region labeled “gps” (as shown
in FIG. 16), but switching to a polygon overlay (FIG. 17)
reveals the selected document to strongly fit into two regions
1701 and 1702, the “gps” region in the top-right and the
“autonomous vehicles & road traffic” region towards the
left. These can be investigated in more detail, as shown in
the finer detailed views 1703 and 1704, respectively, of the
coarser map display 1705 (FIG. 17). In these examples, the
point overlays shown in FIG. 16 become apparent in the
finer map display 1701 in FIG. 17.
1.5.2.2 Text-Based Document Query

Document search can be driven (i.e., the text query trigger
314) by a text string, which could either be expressly entered
or extracted from an external source indicated by a resource
locator. The query reference system score 1505 for that
query is computed by performing topic inference on the text
string at 1003 (as shown within process 1800 in FIG. 18).
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The following is an example query, with the query imple-
mented in a REST API, specifying the collection of docu-
ments to query (“scidata”), the query type (“text”), and the
input text string (“GPS”).

http://localhost:8080/DATA/services/query?collection=scidata&t
ype=text&input=GPS

1.5.2.3 Document-Based Query
A query can emanate from any document (i.e., the docu-

ment query trigger 315) that has already been represented by
a reference system score 305 in the database server 301. This
is the simplest form of a document-based query 311, since
process 1901 simply includes retrieving the reference sys-
tem score of a document from the stored reference system
scores 305, based on the document ID (i.e. docid) provided
by the document-based query 311 (as shown in FIG. 19).
That retrieved document reference system score can then be
used as the query reference score 1505.

The following is an example, with the query implemented
in a REST API and specifying the collection of documents
to query against (“scidata”), the query type (“doc”), and the
identifier of the document from which the query is emanat-
ing, such as a UUID (“2cdcd221-3c6a-34a3-8bfc-
b23736f7c560”).

http://localhost:8080/DATA/services/query?collection=scidata&t
ype=doc&uuid=2cdcd221-3c6a-34a3-8bfc-b23736f7c560

In processing the query, the reference system score 305 of
the document is retrieved from the database server 301,
based on its identifier (docid). The similarity of that refer-
ence system score to the reference system scores of other
documents in the database server 301 is computed and
documents ranked according and retrieved.

A document-based query could be triggered by interacting
with any discrete depiction of the source document, includ-
ing but not limited to a map symbol representing the
document (e.g., one of the circles in FIG. 16, left image), an
entry in a list display 1602 of documents (e.g., any one of the
documents in FIG. 16, right image), or a preview of the
document (e.g., via a “More like this”).
1.5.2.4 Map-Based Document Query

With the map-based query for documents (i.e., the map
location trigger 316), the disclosed system introduces a
radically different approach to search and serendipitous
discovery in a knowledge space. This approach is designed
to counteract some shortcomings of text-based and docu-
ment-based queries. The text-based query requires general
familiarity with the concepts of a particular domain. For
example, entering a query for the text string “GPS” or the
URL “https://en.wikipedia.org/wiki/Global_
Positioning_System” requires some familiarity with domain
concepts and terminology. Meanwhile, document-based
query requires having already identified a particular docu-
ment as the starting point.

In contrast, the map-based query does not require prior
familiarity with domain concepts and does not require
having a document of interest already identified. Instead, by
presenting domain concepts in a highly interactive visual-
ization, users are able to serendipitously discover domain
concepts. This includes hierarchical relationships that are
exposed through zoom operations. Simple point-and-click
interactions in regions of interest are then used to trigger

map-based queries for documents that are related to the
query location or even multiple query locations.
1.5.2.4.1 Query Geometry

In a map-based query, users trigger the query by entering
geometric information on the map, which is received by the
system. This user-generated query geometry input informa-
tion could include a single geometric object, such as a point,
line, or area or it may include multiple geometric objects,
such as multiple points, lines, or areas, or mixtures thereof,
according to user interactions determined by receiving user
input selections in a user interface 2000 for causing a map
location trigger 316 as shown in FIG. 20. The user interface
2000 includes a point input button 2001 for user input of a
geometric point, a line input button 2002 for user input of a
geometric line, a regular rectangle input button 2003 for user
input of a regular rectangular geometric area, an irregular
polygon input button 2004 for user input of an irregular
polygon geometric area, an edit button 2005 for editing the
query geometry input information, and a delete button 2006
for deleting the query geometry input information.
1.5.2.4.2 Query Targets

A map-based query involves computing a spatial overlay
between the query geometry and the geometry of query
targets. In other words, the map location of the query
geometry is matched to the map location of query targets.

If the set of query targets includes the set of documents
that are actually being queried, then the map-based docu-
ment query can be executed exclusively in the map space.
This is referred to as direct document targeting.

Meanwhile, with indirect document targeting, the query
targets are different from the documents being queried. In
that case, it is the high-dimensional reference system that
serves as the link between query targets and the documents
that are actually being queried.
1.5.2.4.2.1 Direct Document Targeting

The database server 301 contains a map score 307 for
each document in the document database 201. Since the map
score 307 (as shown in FIG. 15) in the database server 301
includes explicit geometric information for each document,
that information can be used as target geometry. In other
words, documents already have geometric information, and
executing a map-based query can be performed through
spatial overlay of query geometry with document geometry
in the low-dimensional map space to identify matching
documents.

While this spatial overlay operation in map space can be
executed at great speed, it may result in a large number of
matched documents, especially when the query geometry
includes large rectangle or polygon area objects, long line
objects, or many objects overall. In that case, meaningful
ranking and filtering of documents based on high-dimen-
sional similarity between query objects and matched docu-
ments is desirable. Consequently, the methods for process-
ing of map queries described below are invoked.
1.5.2.4.2.2 Indirect Document Targeting

The rationale for an indirect targeting of documents is best
understood in terms of the nature of similarity relationships
between entities, specifically that the rank order of similari-
ties between entities is not symmetric. For an example,
consider the similarity computed between the reference
system score of a document “A” and the reference system
score of a base map element “B”. If the entry for “B” in the
map score of “A” indicates that “B” is the most similar
element with respect to “A” then the point location of “B”
will determine the point location of “A”. However, since the
rank order of similarities is not symmetric, “A” may not be
the most similar document with respect to “B”. Thus, unless
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a user explicitly chooses to directly select documents in the
map space (i.e., direct document targeting), a more reason-
able interpretation of a map query is that the user is
interested in documents that are representative of the portion
of the high-dimensional space that is depicted in the selected
map region. That is what indirect document targeting pro-
vides.

The only requirement for query targets to be usable during
indirect document targeting is that each target needs to be
associated with (1) a map location, used to target it, and (2)
a reference system score, since that will be the basis for
computing similarity to the reference system scores of
documents in the database.

As has been shown, in the system disclosed here there are
two types of objects for which a low-dimensional map
location and a high-dimensional reference system score are
stored: base map elements and documents. The map model
contains explicit low-dimensional geometry and a vector of
topic loadings for each base map element. Meanwhile, a
document processed by the system will have a reference
system score 305 and a map score 307.

Accordingly, either the base map elements 306 or any set
of processed documents could serve as query targets. In the
latter case, if documents are used as indirect query targets,
then reference system scores 305 and map scores 307 can
together take the place of base map elements 306 in pro-
cesses 2200, 2300, 2500, and 2700 (FIGS. 22, 23, 25, 27).
Importantly, there is no requirement for query targets to be
explicitly visible. Instead, the fact that the visible map, the
query targets, and processed documents all share the same
underlying low-dimensional space means that any query
performed on the visible map can be matched against the
stored geometry of query targets, even if these are not visible
at the time.
1.5.2.4.2.3 Spatial Operators

The specific operators and methods for examining the
spatial relationship between query geometry and the target
geometry through overlay analysis depend on the specific
geometric primitives involved. Both query geometry and
target geometry may employ point, line, or area primitives.
Since the system disclosed here uses representations of
geometry that are standard in GIS technology (e.g., as in
Longley, et al. (2015))— despite not operating on actual
geographic entities—it is possible to use spatial relationship
types and operators found in common software implemen-
tations. The specifics of this depend on the database and
application server technology and programming language
used, which would be familiar to someone skilled in GIS.
For example, if the geometry of query targets is stored in a
MongoDB database, then the MongoDB query selectors
$geoIntersects, $geoWithin, and $near are applicable. Alter-
natively, if target geometry is stored in a PostGIS database,
then such spatial join operators as ST_Intersects, ST_Con-
tains, or ST_DWithin could be used. These operators can be
accessed via the corresponding data base APIs in specific
programming languages. (Longley, et al. (2015) (Longley, P.
A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015),
Geographic Information Science and Systems, Wiley) is
incorporated herein by reference.)

FIG. 21 illustrates how spatial matching between the
geometry of map-based queries and the geometry of query
targets occurs. The illustrated geometric map queries in
simplified base map 2100 include a point query 2101
(selecting or finding one query target), a line query 2102
(selecting or finding three query targets), a regular rectangle
polygon query 2103 (selecting or finding six query targets),
and an irregular polygon query 2104 (selecting or finding

eight query targets). If this example represented a single map
query, it would involve a user entering all four query objects,
specifically the one point object, one line object, and two
polygon objects. These are found to spatially intersect with
sixteen different query targets, including two duplicate query
targets identified by both polygon queries.
1.5.2.4.3 Processing of Map Queries

The system supports two different approaches for pro-
cessing of map-based queries. One approach involves the
creation of a single query reference system score by per-
forming an aggregation of reference system scores of match-
ing query targets. The similarity of that query reference
system score to the reference system scores of documents
can then be computed. The other approach involves the
recognition of groupings of query targets and associated
documents, to which logical and numerical operators are
then applied.
1.5.2.4.3.1 Map Query with Aggregation of Reference Sys-
tem Scores

The simplest form of map-based query produces a refer-
ence system score by performing an overlay operation (at
2201) between the query geometry (from the map-based
query 312) and the target geometry (from the base map
elements 306) and aggregating the targets’ reference system
scores as shown in a process 2200 of the flowchart in FIG.
22. The particular steps, order of steps, and combination of
steps of process 2200 is shown for explanatory purposes
only. Other embodiments may use other steps or combina-
tions of steps or in a different order to perform the same
general functions. Additionally, one or more applications,
routines and physical devices can perform the process 2200.

Since the query geometry may include one or more point,
line, or area objects, there may be multiple query targets
with matching map location. For example, FIG. 21 illus-
trates a query that includes four query objects and a total of
30 query targets. The overlay operator results in sixteen
different query targets being spatially matched (e.g., at 2201)
and their reference system scores extracted (e.g., at 2202).

After retrieving (at 2202) the reference system scores of
spatially matched targets (based on the results of the overlay
operation at 2201), the scores are then aggregated (at 2203)
into a single query reference system score 1505 by a suitable
numerical operator. An example numerical operation would
be to compute an average value for each dimension (i.e.,
topic loading) across all the matched query targets. Appli-
cation of the numerical operator results in an aggregate
reference system score that can then serve as the query
reference system score 1505. The similarity of that score to
the stored reference system scores of documents can then be
computed (FIG. 15) to generate the query response 313.
1.5.2.4.3.2 Map Query with Local and Global Operators

While conceptually simple, the aggregation of multiple
reference system scores into a single score for the query
ignores nuanced patterns in how the high-dimensional topic
space is distributed across the low-dimensional map space.
This can be addressed by a more complex approach that
investigates sets of documents associated with query targets
as shown in a process 2300 in the flowchart of FIG. 23,
which includes a create document set component 2301
(2303-2311) to create a document set with which to build the
document query response. The particular steps, order of
steps, and combination of steps of process 2300 is shown for
explanatory purposes only. Other embodiments may use
other steps or combinations of steps or in a different order to
perform the same general functions. Additionally, one or
more applications, routines and physical devices can per-
form the process 2300.

US 11,650,073 B2
37 38

5

10

15

20

25

30

35

40

45

50

55

60

65



The map-based query 312 contains query objects, a simi-
larity threshold, a local logic operator, a global logic opera-
tor, and a global numeric operator. The application server
302 extracts (at 2302) the query objects from the map-based
query 312. At 2303, the application server 302 performs a
local geometry overlay using the geometry from the
extracted query objects and the geometry of the base map
elements 306 to obtain local query target IDs, which iden-
tifies the base map elements that match the geometry of the
query objects. At 2304, the application server 302 gets the
reference system scores (i.e., query target reference system
scores) from the base map elements 306 for the query targets
identified by the overlay at 2303. At 2305, the application
server 302 determines the similarity values (i.e., query
targets-to-document similarity) between the query target
reference system scores and the reference system scores 305
for all of the documents. At 2306, the application server 302
filters the documents according to the similarity threshold to
filter out documents that have a low similarity value, so only
the more highly relevant documents remain. At 2307, the
application server 302 applies the local logic operator as
described below. At 2308, the application server 302 applies
the local numeric operator as described below. After 2306-
2308, the application server 302 has reduced the initial
documents to a local document set 2309, with document IDs
(DocID) and similarity values. If the map-based query 312
contains multiple query objects that are extracted at 2302
then 2303-2308 are executed for each of those query objects.
This results in multiple local document sets 2309. At 2310,
the application server 302 applies the global logic operator
to th local document sets as described below. At 2311, the
application server 302 applies the global numeric operator as
described below. At this point, the application server 302 has
assembled a global document set 2312, in which each
document has a document ID (DocID) and a similarity
value. The global document set 2312 is used to build the
document query response (at 1504).

The basic principle is to determine for each identified
query target a list of documents, ranked by similarity of
target reference system score to document reference system
score (as determined at 2305), aggregate that into one local
set of documents 2309 per query object (at 2306-2308), and
aggregate (at 2310-2311) those local sets into a single,
global set of documents 2312.

Similarity Threshold. As there may be reference system
scores for a very large number of documents stored, it is
advisable to apply a similarity threshold to filter out docu-
ments with insufficient similarity value (at 2306).

Local Logic Operator. With the exception of a point query
object, there may be multiple query targets spatially asso-
ciated with one query object (see FIG. 21). In other words,
for a given query object, there may exist a local group of
query targets. Each individual target within that group has its
own set of similarity-ranked documents (as determined at
2305). For example, a line query object intersecting three
query targets (FIG. 21) results in three document sets. These
target document sets are combined into a local document set
2309 by applying a logic operator and a numeric operator.
The logic operator specifies the manner in which the asso-
ciation of a document with multiple target document sets is

considered. For example, when using the local AND opera-
tor, a document is only considered for the local set if it is
associated with all query targets within the local group. This
will favor documents that are associated with the full extent
of a query object. Alternatively, the local OR operator allows
any document that is associated with any of the local query
targets to be considered.

Local Numeric Operator. If a document is associated with
multiple local query targets, then there is the question of how
to combine the different similarity values. For example, a
document associated with three local targets will accord-
ingly have three different similarity values. Useful numeric
operators include, but are not limited to the local average,
local sum, local best score, and local worst score. These are
chosen in conjunction with the choice of local logic operator
and the size of the query object in the map space. For
example, when relaxing local set membership with the local
OR operator—which will be necessary for very large query
objects—then the local sum or local count operators can
ensure that dominant documents still rise to the top of
rankings within the local document set.

Global Logic Operator. When multiple map query objects
are used in a single query, then this will result in multiple
local document sets 2309 created. For example, a query
involving four query objects (FIG. 21) will result in four
local document sets. These local document sets are com-
bined into a global document set 2312 by applying a logic
operator (at 2310) and a numeric operator (at 2311). The
logic operator specifies to which degree the occurrence of
documents in multiple local document sets is considered.
For example, when using the global AND operator, then a
document is only considered for the global set if it is
associated with all local sets. Meanwhile, the local OR
operator allows a document that is associated with any of the
local sets to be considered for the global set. Global logic
operators allow map queries to function as an intuitive
Boolean mechanism for navigating high-dimensional
knowledge spaces.

Global Numeric Operator. When merging local document
sets 2309 into one global document set 2312, then a docu-
ment occurring in multiple local sets will have multiple
similarity values. The global numeric operator prescribes
how to transform these into a single value for the global set.
Useful numeric operators include, but are not limited to the
global average, global sum, global best score, and global
worst score.

FIG. 24 shows an embodiment of the present disclosure as
a user interface 2400 in a web application showing a map
display 2401 (with a point overlay 2404 and an area overlay
2405), a list display 2402, and a content display 2403. In this
example, a database containing technology articles is que-
ried using a map-based query, with local OR, local average,
global AND, and global sum operators. The user has entered
or drawn two map query objects: a point location (at point
overlay 2404) in the “privacy concerns” region and a
rectangular polygon (at area overlay 2405) in the “biological
sequences” region.

For this example, the API call from the web application
looks as follows:

http://localhost:8080/DATA/services/query?collection=tech&type=loc&sort=min
score&size=100&params=logicoplocal:or,numoplocal:avg,logicopglobal:and,numo
pglobal:sum&input=[“type”:“FeatureCollection”,“features”:[{“type”:“Feature”
,“properties”:{ },“geometry”:[“type”:“Polygon”, “coordinates”:[[[-
127.484172,0.005606],[-127.484172,0.006008],[-127.483704,0.006008],[-
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-continued

127.483704,0.005606],[-
127.484172,0.005606]]]}},[“type”:“Feature”,“properties”:{ },“geometry”:{“typ
e”:“Point”,“coordinates”:[-127.487499,0.001815]}}]}

This query would be URL-encoded for safe passage prior to
being issued by the web application. In this embodiment, the
query input is encoded in the GeoJSON format, with all
query objects contained in a FeatureCollection, which
includes one Polygon object and one Point object.

In this web application, the query response is presented as
map display 2402 and list display 2403, and the content of
the top-ranked document presented in the list display 2403.
1.5.2.4.3.3 Map Query with Negative Selection

Map query objects could also be used to drive negative
selection, i.e., to specify regions of the knowledge space
from which one does not want to retrieve documents. These
negative query objects can either be subjected to a negative
logic operator, like a NOT operator, or one can perform a
more subtle operation of applying a negative numeric opera-
tor. An example for the latter is to attach a negative weight
to the similarity values of documents associated with nega-
tive regions. This will result in those documents being
ranked lower. In conjunction with the similarity threshold

(as filtered at 2306 in FIG. 23), it may also eliminate
documents from consideration altogether.

FIG. 25 is a flow chart showing an example process 2500
for processing a map-based query into a query response
containing a set of return documents by distinguishing
between positive and negative query components and pro-
cessing each as the local and global document sets 2309 and
2312 (i.e., the create document set component 2301 of FIG.
23), followed by the application of negative operators to
produce the set of return documents, in accordance with
some embodiments. The particular steps, order of steps, and
combination of steps of process 2500 is shown for explana-
tory purposes only. Other embodiments may use other steps
or combinations of steps or in a different order to perform
the same general functions. Additionally, one or more appli-
cations, routines and physical devices can perform the
process 2500.

The map-based query 312 includes operators (e.g., any of
the local/global, logic/numeric operators mentioned above
with respect to FIG. 23), as well as negative logic and
numeric operators. At 2501, the application server 302
extracts positive query objects from the map-based query
312, similar to the extraction of query objects at 2302 above.
Additionally, at 2502, the application server 302 extracts
negative query objects from the map-based query 312. At
2301a, the application server 302 performs some or all of the
above-described steps for the create document set compo-
nent 2301 (FIG. 23) to create a document set based on the
positive query objects, i.e., a positive document set 2503.

Additionally, at 2301b, the application server 302 performs
some or all of the above-described steps for the create
document set component 2301 to create a document set
based on the negative query objects, i.e., a negative docu-
ment set 2504. At 2505, the application server 302 applies
the negative logic operator to the positive document set 2503
and the negative document set 2504. At 2506, the applica-
tion server 302 applies the negative numeric operator. After
2505 and 2506, the application server 302 assembles the
global document set 2312, with document IDs (DocID) and
similarity values with which to build the document query
response (at 1504).

Like with all queries, this can be communicated from a
web application to the application server 302 with minor
additions to the API call. Negative map geometry is here
included as a second FeatureCollection in the input param-
eter, separated by double underscores from the positive
FeatureCollection (Polygon geometry is abbreviated in this
URL snippet), with a negative weight of 0.1 indicating a
10% penalty.

http://localhost:8080/DATA/services/query?collection=tech&type=loc&sort=mi
nscore&size=100&params=logicoplocal:or,numoplocal:avg,logicopglobal:and,nu
mopglobal:avg,negweight:0.1&input=[“type”:“FeatureCollection”,“features”:[
{“type”:“Feature”,“properties”:{ },“geometry”:[“type”:“Polygon”,“coordinate
s”:[[[-127.486261,0.002661], ...
127.486261,0.002661]]]}}]} —— [“type”:“FeatureCollection”,“features”:[{“type
”:“Feature”,“properties”:{ },“geometry”:[“type”Polygon“, ”coordinates“:[[[
-127.486122,0.001762],[-127.486122,0.002684],[-127.485564,0.002684],[-
127.485564,0.001762],[-127.486122,0.001762]]]}}]}

FIG. 26 shows the nuanced effect of using a numeric
operator to negatively weigh regions in the map. The top
panel 2601 shows a query response for a map-based query
for documents being visualized, with a large, irregularly
shaped query polygon 2602 covering the “markets & cus-
tomers” region. Of the top 100 ranked documents, a majority
of 53% are in the “financial market” area, including the top
six documents shown in the list display 2603. The middle
panel 2604 shows a negative map-based query 2605 being
added, received by user input of a rectangle around the
“financial market” region. At 10% penalty for that negative
area, the top six documents remain the same in the list
display 2603, though with lower scores. More importantly,
the top-100 documents are now less dominated by the
negative region, with other regions within the positive map
query polygon for the query response 2602 receiving rec-
ognition, including 45 documents in the “economic growth”
region and 18 in the “electronic commerce” area. Finally, the
bottom panel 2606 shows the effect of a 30% penalty for the
negative map-based query 2605, which results in no docu-
ments in the list display 2603 from the “financial market”
region making it into to top-100, which are now dominated
by “economic growth” and “electronic commerce”.
1.5.2.4.4 Map Query with Inverted Map Scores

The execution of map queries as similarity computation
between the reference system scores of query targets and
documents (e.g., at 2305) performs very well for small to
medium sized collections of documents. However, process-
ing times will increase significantly when reference system
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scores 305 for several hundred thousand documents or more
are involved. This can be counteracted by exploiting the fact
that the stored map scores of documents 307 already contain
a complete accounting of similarities between base map
elements 306 and documents in accordance with a process
2700 in the flowchart of FIG. 27. The particular steps, order
of steps, and combination of steps of process 2700 is shown
for explanatory purposes only. Other embodiments may use
other steps or combinations of steps or in a different order to
perform the same general functions. Additionally, one or
more applications, routines and physical devices can per-
form the process 2700.

A map score is an array of similarity values between the
reference system scores of one document to all base map
elements (document-to-base map similarity values). Since
each entry in that map score corresponds to one base map
element, map scores 307 can be inverted (at 2701) to form
inverted map scores 2702, so that each base map element
then becomes associated with an array of similarity values to
documents and corresponding document identifiers (base
map-to-document similarity values). This makes it possible
to replace the computation of similarities (at 2305) in the
above-described steps for the create document set compo-
nent 2301 with a fast look-up of stored similarities (at 2703)
(look up query targets-to-document similarity) after per-
forming the local geometry overlay at 2303 and before
filtering the documents according to the similarity threshold
at 2306.

These inverted map scores can similarly be used to speed
up text-based queries and document-based queries, where
the computation of similarities between query reference
system score and document reference system scores can be
replaced by a computation of similarities between query
reference system score and the scores of base map elements,
followed by a look-up of inverted map scores and respective
documents. The speed-up is due to the fact that the number
of base map elements is generally far smaller than the
number of stored documents.
1.6 Overview of Computing Systems

FIG. 28 is a simplified schematic diagram of a knowledge
space computing 2800 system for use in the example knowl-
edge space 101 shown in FIG. 1 and for performing any of
the functions described herein, in accordance with some
embodiments. Other embodiments may use other compo-
nents and combinations of components. For example, the
computing system 2800 may represent one or more physical
computer devices, such as web servers, rack-mounted com-
puters, network storage devices, desktop computers, laptop/
notebook computers, etc. In some embodiments imple-
mented at least partially in a cloud network potentially with
data synchronized across multiple geolocations, the com-
puting system 2800 may include a cloud server or cloud
database. In some embodiments, the functions of the com-
puting system 2800 are enabled in a single computer device.
In more complex implementations, some of the functions of
the computing system 2800 are distributed across multiple
computer devices, whether within a single server farm
facility or multiple physical locations. In some embodiments
wherein the computing system 2800 represents multiple
computer devices, some of the functions of the computing
device 2800 are implemented in some of the computer
devices, while other functions are implemented in other
computer devices. In the illustrated embodiment, the com-
puting system 2800 generally includes at least one processor
2801, a main electronic memory 2802, a data storage 2803,
a user I/O 2804, and a network I/O 2805, among other

components not shown for simplicity, connected or coupled
together by a data communication subsystem 2806.

The processor 2801 represents one or more central pro-
cessing units on one or more printed circuit boards (PCBs)
in one or more housings or enclosures. In some embodi-
ments, the processor 2801 represents multiple microproces-
sor units in multiple computer devices at multiple physical
locations interconnected by one or more data channels, such
as the Internet, a WAN, a LAN, etc. When executing
computer-executable instructions for performing the above-
described functions of the knowledge space 101 in coop-
eration with the main electronic memory 2802, the processor
2801 becomes a special purpose computer for performing
the functions of the instructions.

The main electronic memory 2802 represents one or more
RAM modules on one or more PCBs in one or more
housings or enclosures. In some embodiments, the main
electronic memory 2802 represents multiple memory mod-
ule units in multiple computer devices at multiple physical
locations. In operation with the processor 2801, the main
electronic memory 2802 stores the computer-executable
instructions executed by, and data processed by, the proces-
sor 2801 to perform the above-described functions of the
knowledge space 101.

The data storage 2803 represents or comprises any appro-
priate number or combination of internal or external physi-
cal mass storage devices, such as hard drives, optical drives,
network-attached storage (NAS) devices, flash drives, etc. In
some embodiments, the data storage 2803 represents mul-
tiple mass storage devices in multiple computer devices at
multiple physical locations. The data storage 2803 generally
provides persistent storage 2807 (e.g., a non-transitory com-
puter readable medium) for the programs (e.g., computer-
executable instructions) and data used in operations
described above for the knowledge space 101 (e.g., opera-
tions of the processor 2801 and the main electronic memory
2802), such as, but not limited to, the document database
201, the reference system creation component 202, the base
map creation component 203, the inference server compo-
nent 204, the reference system API 205, the Base Map API
206, and the map server component 207, among others not
shown for simplicity. Under control of these programs and
using this data, the processor 2801, in cooperation with the
main electronic memory 2802, performs the above-de-
scribed functions for the knowledge space 101.

The user I/O 2804 represents one or more appropriate user
interface devices, such as keyboards, pointing devices, dis-
plays, etc. In some embodiments, the user I/O 2804 repre-
sents multiple user interface devices for multiple computer
devices at multiple physical locations. A user of the knowl-
edge space 101, for example, may use these devices to
access, setup and control the computing system 2800 to
perform any or all of the above-described functions.

The network I/O 2805 represents any appropriate net-
working devices, such as network adapters, etc. for com-
municating through a network, such as the Internet, a WAN,
a LAN, etc. In some embodiments, the network I/O 2805
represents multiple such networking devices for multiple
computer devices at multiple physical locations for commu-
nicating through multiple data channels.

The data communication subsystem 2806 represents any
appropriate communication hardware for connecting the
other components in a single unit or in a distributed manner
on one or more PCBs, within one or more housings or
enclosures, within one or more rack assemblies, within one
or more physical facilities, etc.
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Reference has been made in detail to embodiments of the
disclosed invention, one or more examples of which have
been illustrated in the accompanying figures. Each example
has been provided by way of explanation of the present
technology, not as a limitation of the present technology. In
fact, while the specification has been described in detail with
respect to specific embodiments of the invention, it will be
appreciated that those skilled in the art, upon attaining an
understanding of the foregoing, may readily conceive of
alterations to, variations of, and equivalents to these embodi-
ments. For instance, features illustrated or described as part
of one embodiment may be used with another embodiment
to yield a still further embodiment. Thus, it is intended that
the present subject matter covers all such modifications and
variations within the scope of the appended claims and their
equivalents. These and other modifications and variations to
the present invention may be practiced by those of ordinary
skill in the art, without departing from the scope of the
present invention, which is more particularly set forth in the
appended claims. Furthermore, those of ordinary skill in the
art will appreciate that the foregoing description is by way
of example only, and is not intended to limit the invention.

What is claimed is:
1. A method comprising:
receiving, by a processor, content of first text documents;
training, by the processor, multiple topic models based on

the content of the first text documents;
filtering and harmonizing, by the processor, the multiple

topic models;
performing, by the processor, topic labeling for the mul-

tiple topic models;
producing, by the processor, topic model inferencers for

the multiple topic models;
loading, by the processor, of the topic model inferencers;
loading, by the processor, of a base map model;
accessing, by the processor, content of second text docu-

ments;
providing, by the processor, a reference system API;
providing, by the processor, a base map API;
storing, by a database server, the topic model inferencers;
storing, by the database server, the second text docu-

ments;
storing, by the database server, reference system scores;
storing, by the database server, the base map model;
storing, by the database server, map scores;
computing, by the processor, the reference system scores

by accessing the topic model inferencers and perform-
ing inferencing on the second text documents; and

computing, by the processor, the map scores by accessing
the base map model and the reference system scores.

2. A method comprising:
receiving, by a processor, content of first text documents;
training, by the processor, multiple topic models based on

the content of the first text documents;
filtering and harmonizing, by the processor, the multiple

topic models;
performing, by the processor, topic labeling for the mul-

tiple topic models;
producing, by the processor, topic model inferencers for

the multiple topic models;
loading, by the processor, of the topic model inferencers;
loading, by the processor, of a base map model;
accessing, by the processor, content of second text docu-

ments;
providing, by the processor, a reference system API; and
providing, by the processor, a base map API;

wherein the base map API comprises using an application
server to produce a query response to a text input by:

producing an overlay reference system score by accessing
the topic model inferencers and performing topic infer-
ence on a text string extracted from the text input;

producing an overlay map score by computing a similarity
measure between the overlay reference system score
and reference system scores associated with base map
elements of the base map model; and

constructing a response geometry using the overlay map
score and a geometry of the base map elements.

3. The method of claim 2, wherein the response geometry
is constructed by analyzing the overlay map score and
utilizing the geometry of one or more of the base map
elements to create point objects, line objects, area objects, or
landscape objects.

4. A method comprising:
receiving, by a processor, content of first text documents;
training, by the processor, multiple topic models based on

the content of the first text documents;
filtering and harmonizing, by the processor, the multiple

topic models;
performing, by the processor, topic labeling for the mul-

tiple topic models;
producing, by the processor, topic model inferencers for

the multiple topic models;
loading, by the processor, of the topic model inferencers;
loading, by the processor, of a base map model;
accessing, by the processor, content of second text docu-

ments;
providing, by the processor, a reference system API; and
providing, by the processor, a base map API;
wherein the reference system API comprises using an

application server to respond to either a text-based
query, a document-based query, or a map-based query,
with a query response being produced using processes
that comprise:

determining a query reference system score;
computing a similarity value between the query reference

system score and reference system scores stored by a
database server;

retrieving document identifiers for selected text docu-
ments from the second text documents whose similarity
value compared to the query reference system score
falls within user-definable upper and lower bounds;

obtaining document metadata by using the document
identifiers to find the selected text documents stored by
the database server;

obtaining document geometry by using document identi-
fiers to find map scores for the selected text documents
stored by the database server; and

constructing the query response containing geometry
information and metadata for the selected text docu-
ments.

5. The method of claim 4, wherein determining the query
reference system score in response to the text-based query
comprises:

extracting a text string from the text-based query;
accessing the topic model inferencers; and
performing topic inferencing on the text string using the

topic model inferencers.
6. The method of claim 4, wherein determining the query

reference system score in response to the document-based
query comprises:

extracting a document identifier from the document-based
query;
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using the document identifier to find a document reference
system score among the reference system scores stored
by the database server; and

using the found document reference system score as the
query reference system score.

7. The method of claim 4, wherein determining the query
reference system score in response to the map-based query
comprises:

extracting query geometry from the map-based query;
performing spatial overlay between the query geometry

and a target geometry to find matching query targets;
and

using the matching query targets to find matching docu-
ments from among the documents stored by the data-
base server.

8. The method of claim 7, wherein a set of query targets
is identical to a set of the second text documents being
queried and the spatial overlay between the query geometry
and the target geometry directly identifies the matching
documents.

9. The method of claim 7, wherein a set of query targets
is not identical to a set of the second text documents being
queried and a process for finding matching documents
comprises:

retrieving the reference system scores of matched query
targets; and

aggregating the retrieved reference system scores into the
query reference system score.

10. The method of claim 7, wherein a set of query targets
is not identical to a set of the second text documents being
queried and a process for finding matching documents
comprises:

extracting one or more query objects from the map-based
query;

performing the spatial overlay between each query object
and the target geometry to find the matching query
targets;

retrieving, for each matching query target, its target
reference system score;

computing, for each target reference system score, the
similarity value to each of the reference system scores
and filtering documents within user-definable bounds
of similarity;

forming one local document set for each query object by
combining sets of documents associated with indi-
vidual query targets through local logic operators and
local numeric operators;

forming a global document set by combining the sets of
documents associated with each local document set
through global logic operators and global numeric
operators; and

transforming the global document set into the query
response by retrieving geometry information and meta-
data for the selected text documents.

11. The method of claim 10, wherein the map-based query
contains positive query objects and negative query objects
that are combined using a process that comprises:

extracting from the map-based query one or more of the
positive query objects;

extracting from the map-based query one or more of the
negative query objects;

creating a positive global document set by using the
positive query objects;

creating a negative global document set by using the
negative query objects;

forming the global document set by combining the posi-
tive global document set and the negative global docu-
ment set through negative logic operators and negative
numeric operators; and

transforming the global document set into the query
response by retrieving geometry information and meta-
data for documents.

12. The method of claim 10, wherein computing for each
target reference system score the similarity to each of the
reference system scores comprises a look-up of target-to-
document similarity, which comprises accessing inverted
map scores.

* * * * *
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